摘要
本文研究的积—微分算子是以众多应用领域为背景的、无界非自伴线性算子。我们以泛函分析为工具,籍助L^2空间的线性算子理论,在较一般的条件下,证明了这类算子存在占优本征值(Dominant Eigenvalue)。
Ihe integro-ditterential operators investigated in this paper is a class of unbounded, non-selfadjoint operators arising from various applied areas. By using functional analysis, especially, linear operator theory in L^2 space, we show the existence of dominant eigenvalue under general assumptions.
基金
江西省自然科学基金
关键词
积分微分算子
占优特征值
Dominant eigenvalue
Discrete eigenvalue
Compact operator
Positive operator