期刊文献+

同时强镇定的一个充分条件 被引量:2

A sufficient condition for strong simultaneous stabilization
下载PDF
导出
摘要 一个稳定的控制器可同时镇定n个对象(同时强镇定)等价于一个控制嚣(不一定稳定)同时镇定n+1个对象(同时镇定).两个以上对象的同时强镇定和三个以上对象的同时镇定是线性系统中一个亟待解决的公开问题.文中所作的基本假定是所有的对象具有相同的简单不稳定零点,在此条件下给出了n个对象同时强镇定的一个充分条件.此条件仅需确定n个对象的不稳定零点并且判定由不稳定零点导出一个相应矩阵是正定的,就能判定n个对象同时强镇定,因此是一个易于检验的充分条件.同时给出了n个对象同时强镇定的算法.丰富了同时强镇定的条件和算法. As is well known, a single stable controller which stabilizes n SISO plants (strong simultaneous stabilization) is equivalent to a single controller (not necessarily stable) which stabilizes n+1 plants (simultaneous stabilization). Strong simultaneous stabilization and simultaneous stabilization are two open problems that need to be solved urgently in linear systems. Under the assumption that all the plants have the same simple unstable zeros, this paper gives a sufficient condition for strong simultaneous stabilization. Under this condition, in order to insure n SISO plants to be strong simultaneous stabilization, it is only necessary to determine the unstable zeros of n plants, and to determine whether the corresponding matrix determined by the unstable zeros is positive definite. This paper also gives an algorithm to determine the simultaneous stabilization controller, and thus enriches the condition and algorithm for the strong simultaneous stabilization.
出处 《海军工程大学学报》 CAS 2003年第5期1-4,共4页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(60274007) 高校博士点基金(20010487005) 海军工程大学科学研究基金(E988)
关键词 同时强镇定 线性系统 插值算法 充分条件 控制器 strong simultaneous stabilization linear system interpolation algorithm
  • 相关文献

参考文献10

  • 1[1]Youla D, Bongiorno J, Lu C. Single-loop feedback stabilization of linear multivariable dynamical plants [J]. Automatica, 1974, 10(2):159-173.
  • 2[2]Vidyasagar M. Control System Synthesis: A Factorization Approach [M].MA: MIT Press, 1985.
  • 3[3]Ying J Q. Conditions for strong stabilizabilities of n-dimensional systems [J]. Multidimensional Syst. Signal Processing,1998,9(1):125-148.
  • 4[4]Ying J Q. On the strong stabilizabilities of MIMO n-dimensional linear systems [J]. AIAM J. Control Optim., 2000,38(2):313-335.
  • 5[5]Lin Z, Ying J, Xu L. An algebraic approach to strong stabilizability of linear nD MIMO systems [J]. IEEE Trans. Automat. Contr., 2002,47(9):1510-1514.
  • 6[6]Fonte C, Zasadzinski M, Bernier C, et al. On the simultaneous stabilization of three or more plants [J]. IEEE Trans. Automat. Contr., 2001,46(7):1101-1107.
  • 7[7]Saif A W, Gu D W, Kavranoglu D, et al. Simultaneous stabilization of MIMO systems via robustly stabilizing a central plant [J]. IEEE Trans. Automat. Contr.,2002,47(2):363-369.
  • 8[8]Abdallah C T, Dorato P, Bredemann M. New sufficient conditions for strong simultaneous stabilization [J]. Automatica, 1997,42(6):1193-1196.
  • 9何汉林,王中生.反馈系统强镇定的区间算法[J].海军工程大学学报,2002,14(2):1-4. 被引量:3
  • 10[11]Dorato P, Park H, Li Y. An algorithm for interpolation with units in H∞ with applications to feedback stabilization [J]. Automatica, 1989,25(2):427-430.

二级参考文献7

  • 1Youla D C, Bongiorno J J, Lu C N. Single-loop feedback stabilization of linear multivariable plants [J]. Automatica, 1974,(10):159-173.
  • 2Anderson B D O. A note on the Youla-Bongiorno-Lu condition [J]. Automatica, 1976,(12):387-388.
  • 3Doyle J C, Francis B A, Trannenbarm A R. Feedback control theory [M]. Macmillan Publishing Company, 1999.
  • 4Ying J Q, Lin Z, Xu L. Some algebraic aspects of the strong stabilizability of time-delay linear systems [J]. IEEE Trans. Auto. Contr., 2001,(3):454-457.
  • 5Vidyasagar M. Control System Synthesis [M]. Cambridge, MA: MIT Press,1985.
  • 6李庆扬,莫孜中,祁力群.非线性方程组的数值算法 [M].北京:科学出版社,1992.
  • 7Qi L. A note on the Moore test for nonlinear systems [J]. Ibid,1982,19:851-857.

共引文献2

同被引文献22

  • 1HanlinHE ZhongshengWANG XiaoXinLIAO.On the order of stable compensators for a class of time-delay system[J].控制理论与应用(英文版),2004,2(1):85-88. 被引量:3
  • 2Bellman R E, Cooke K L. Differential-Difference Equations [M]. New York: Academic,1963.
  • 3Dugard L, Verriest E I. Stability and Control of Time-Delay Systems [M]. Berlin: Springer-Verlag,1997.
  • 4Vidyasagar M. Control System Synthesis: A Factorization Approach [M]. Cambridge, MA:MIT Press,1985.
  • 5Glusing-Luerben H. A behavioral approach to delay-differential systems [J]. AIAM J. Contr. Optima., 1997, 35(2):480-499.
  • 6Kamen E W, Khargonekar P P, Tannenbaum A. Proper stable Bezout factorizations and feedback control of linear time-delay systems [J]. Int.J.Contr., 1986,43(3):837-857.
  • 7Bonnet C, Partington J R. Bezout factors and L1-optimal controllers for delay systems using a two-parameter compensator scheme [J]. IEEE Trans. Auto. Contr., 1999, 44(8):1512-1521.
  • 8Ying J Q, Lin Z, Xu L. Some algebraic aspects of the strong stability of time-delay linear systems [J]. IEEE Trans. Auto. Contr.,2001,46(3):454-457.
  • 9He H L, Wang Z S, Liao X X. Sufficient and necessary condition of strong stabilization for a class of time-delay systems [J]. Advances in Systems Science and Application, 2003,3(3):357-362.
  • 10Kamen E W, Khargonekar P P, Tannenbaum A. Stabilization of time-delay systems using finite-dimensional compensators [J]. IEEE Trans. Auto. Contr.,1985,30(1):75-78.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部