期刊文献+

MEAN CURVATURE FLOW OF GRAPHS IN ∑1×∑2

原文传递
导出
摘要 Let ∑1 and ∑2 be m and n dimensional Riemannian manifolds of constant curvature respectively.We assume that w is a unit constant m-form in ∑1 with respect to which ∑0 is a graph.We set v=(e1∧… ∧em,w),where {e1,…em} is a normal frame on ∑1,Suppose that ∑0 has bounded curvature.If v(x,0)≥v0≥√2/2 for all x,then the mean curvature flow has a global solution F under some suitable conditions on the curvatrue of ∑1 and ∑2.
作者 LiJiayu
出处 《Journal of Partial Differential Equations》 2003年第3期255-265,共11页 偏微分方程(英文版)
  • 相关文献

参考文献1

  • 1CHEN Jing Yi Department of Mathematics.The University of British Columbia.Vancouver.B.C..Canada V6T 1Z2 E-mail:jychen@math.ubc.caLI Jia Yu Institute of Mathematics.Academy of Mathematics and System Sciences.Chinese Academy of Sciences.Beijing 100080.P.R.China Department of Mathematics.Fudan University.Shanghai 200433.P.R.China E-mail:lijia@math03.math.ac.cnTIAN Gang Department of Mathematics,MIT.Cambridge.MA 02139.U.S.A.E-mail:tian@math,mit.edu.Two-Dimensional Graphs Moving by Mean Curvature Flow[J].Acta Mathematica Sinica,English Series,2002,18(2):209-224. 被引量:7

二级参考文献5

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部