期刊文献+

THE CAUCHY PROBLEM FOR THE GENERALIZED KORTEWEG-DE VRIES-BURGERS EQUATION IN H^-s

原文传递
导出
摘要 The Cauchy problem for the generalized Korteweg-de Vries-Burgers equation is considered and the local existence and uniqueness of solutions in L^q (0, T; L^p)∩L^∞(0,T; H^-s)(0≤ s < 1) are obtained for initial data in H^-s. Moreover, the local solutions are global if the initial data are sufficiently small in critical case. Particularly, for s=0, the generalized Korteweg-de Vries-Burgers equation satisfies the energy eauality, so the initial data can be arbitrarily large to obtain the global solution.
作者 JiaYueling
出处 《Journal of Partial Differential Equations》 2003年第3期275-288,共14页 偏微分方程(英文版)
  • 相关文献

参考文献15

  • 1Amick Ch J, Bona J L, Schonbek M E. Decay of solution of some nonlinear wave equations, J Differential Equation, 81(1989), 1-49.
  • 2Karch G. Self-similar large-time behevior of solutions to Korteweg-de Vries-Burgers equation, Nonlinear Analysis, 35(1999), 199-219.
  • 3Bona J L, Smith R. The initial-value problem for the Korteweg-de Vries equation, Philos,Trams, Roy Sac London, Ser A, 278(1975), 555-601.
  • 4Naumken P I, Shishmarer I. Nonlinear nonlocal equation in the theory of waves,Amer Math Sac Series Transl of Math, Monographs, 133(1994).
  • 5Bergh J, and Lofstorodl J. Interpolation Spaces, Springer-Verleg,1976.
  • 6Wang Baoxiang , The Cauchy problem for critical and subcritical semilinear parabolic equation in Lr(I), Nonlinear Analysis, 48(2002), 747-764.
  • 7CHRIST F M. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, Journal of Functional Analysis, 99-100(1991), 87-109.
  • 8Keel M and Tao T. Endpoint Strichartz Estimates, Amer J of Math, 120(1998), 955-980.
  • 9Baoxiang Wang. The Cauchy problem for critical and subcritical semilinear parabolic equation in Lr(Ⅱ), Nonlinear Analysis, TMA, 52, (2003).
  • 10Bona J L, Luo L. Decay of solutions to nonlinear, dispersive wave equation, Differential Integral Equations, 6(1993), 961-980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部