期刊文献+

THE (u+κ)-ORBIT OF ESSENTIALLY NORMAL OPERATORS AND COMPACT PERTURBATIONS OF STRONGLY IRREDUCIBLE OPERATORS 被引量:3

THE (u+κ)-ORBIT OF ESSENTIALLY NORMAL OPERATORS AND COMPACT PERTURBATIONS OF STRONGLY IRREDUCIBLE OPERATORS
原文传递
导出
摘要 Let н be a complex, separable, infinite dimensional Hilbert space, T ε(H). (u+K)(T) denotes the (u+k)-orbit of T, i.e., (u+k)(T) = {R-1TR: R is invertible and of the form unitary plus compact}. Let be an analytic and simply connected Cauchy domain in C and n ε N. A(, n) denotes the class of operators, each of which satisfies (i) T is essentially normal; (ii) σ(T) =, ρF(T) ∩ σ(T) = ; (iii) ind (λ-T) = -n, nul (λ-T) = 0 (λ∈Ω ). It is proved that given T1, T2 ε A(, n) and ε > 0, there exists a compact operator K with K <ε such that T1 +Kε (u+k)(T2). This result generalizes a result of P. S. Guinand and L. Marcoux [6,15]. Furthermore, the authors give a character of the norm closure of (u+K)(T), and prove that for each T ε A(, n), there exists a compact (SI) perturbation of T whose norm can be arbitrarily small.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2000年第2期237-248,共12页 数学年刊(B辑英文版)
关键词 Essentially normal (u+k)-orbit Compact perturbation SPECTRUM Strongly irreducible operator (u+К)-轨道 正规算子 紧摄动
  • 相关文献

参考文献5

  • 1Ji Y Q,Integral Eqs Operator Theory,1997年,28卷,28页
  • 2Ji Y Q,Michigan Math J,1997年,44卷,85页
  • 3Jiang C L,Trans Amer Math Sco,1997年,349卷,217页
  • 4Jiang C L,Integral Equations Operator Theory,1996年,24卷,81页
  • 5Jiang C L,OperatorTheory,1996年,36卷,3页

同被引文献5

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部