期刊文献+

抛物型积分-微分型方程混合元解的整体超收敛分析 被引量:6

Analysis for the Global Superconvergence of the Mixed Eleme nt Solution to Parabolic Integro Differential Equation
原文传递
导出
摘要 本文利用积分恒等式证明了抛物型积分 -微分方程混合元解的超逼近性质 ,对常用 R- T元解通过插值后处理 ,得到整体超收敛 。 The superconvergence property of the mixed el em ent solution to parabolic integro-differential equation is demonstrated based o n the integral identities. For the well Known R-T elements, via interpolation p ost processing, the global superconvergence is obtained and the posteriori error estimates are also derived.
出处 《数学的实践与认识》 CSCD 北大核心 2003年第10期72-77,共6页 Mathematics in Practice and Theory
关键词 抛物型积分-微分型方程 混合元解 积分恒等式 整体超收敛 超逼近 后验误差估计 integral identity R-T elements superconvergence sobolev type equation
  • 相关文献

参考文献18

  • 1张书华.[D].中国科学院系统科学研究所,1996.
  • 2林群 严宁宁.高效有限元构造于分析[M].河北大学出版社,1996..
  • 3朱起定 林群.有限元超收敛理论[M].湖南科学技术出版社,1989..
  • 4Brandts J. Superconvergence and a posteriori errorestimation for triangular mixed finite elements [J]. Numer Math, 1994, 68: 311--324.
  • 5Douglas J, Milner F. Interior and superconvergence estimates for second order elliptic equations[J]. RAIRO,Model Math Anal Numer, 1985, 19: 297--328.
  • 6Douglas J, Wang J. Superconvergence for mixed finite element methods on rectangular domains[J]. Calcolo,1989, 26: 121--134.
  • 7Duran R. Superconvergence for rectangular mixed finite elements[J]. Numer Math, 1990, 58: 287--298.
  • 8Ewing R E, Lazarov R, Wang J. Superconvergence of the velocity along the Gauss lines in mixed finite element methods[J]. SIAM J Numer, 1991, 28: 1015--1029.
  • 9Fortin M. An analysis of the convergence of mixed finite element method[J]. RAIRO, Anal Numer, 1977, 11:341--354.
  • 10Lin Q, Pan J. High accuracy for mixed finite element methods in Raviart-Thomas element[J], to appear in J Comp Math.

共引文献10

同被引文献25

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部