期刊文献+

多尺度分析用于图像边缘的精确检测 被引量:1

Accurate Edge Detection Based on Multisolution Analysis
下载PDF
导出
摘要 图像中边缘往往存在于一个较宽的尺度范围内,边缘的定位精确性是衡量一个边缘检测算法性能的重要依据。众多算法中,引起较大关注的是M-H的二阶导数过零点检测和Canny的一阶导数最大值检测,但都存在各自的不足。本文提出将线性权重函数(LWF)作为平滑函数,并利用小波理论的多尺度分析方法,对图像边缘进行检测,其在定位精确性、噪声抑制能力方面均有较好性能。 As intensity drastically changes at different scales within an image, the performance of an edge detector depends on its ability to accurately locate the real edge. Among those existing image segmentation techniques, Marr and Hildreth抯 LoG operator and Canny抯 optimal edge detector receives popular interests, but they also have shortcomings. The algorithm proposed in this paper uses LWF (line weight function) as smoothing filter, which can effectively imitate human visual receptive field. By means of multiscale analysis and the image edge is described with more accuracy and higher signal-to-noise-ratio.
出处 《电路与系统学报》 CSCD 2003年第5期68-71,共4页 Journal of Circuits and Systems
关键词 边缘检测 线性权重函数 小波变换 多尺度分析 Edge detection Line Weight Function Wavelet Transform Multiscale Analysis
  • 相关文献

参考文献7

  • 1常鹏,阎平凡.一种基于小波变换的多尺度边缘检测方法[J].模式识别与人工智能,1996,9(3):251-257. 被引量:11
  • 2赵年松 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1996..
  • 3Marr D, Hildreth E. Theory of Edge Detection [A]. Proc R Soc, London B 207[C]. 1980: 187-217.
  • 4Young R A. Simulation of Human Retinal Function with the Gaussian Derivative Model [A]. IEEE the Computer Society Conference on Computer Vision and Pattern Recognition [C]. Michigan USA, 1988: 564-569.
  • 5Mach E. On the Influence of Spatially and Temporally Varying Light Stimuli on Visual Perception [D]. In: Mach Bounds: Quantitative Studies in Neural Networks in the Retina[C]. F Ratlif, ed., San Francisco :Holden-Day, 1965, 321-332.
  • 6Kennedy L M, Basu M. Image Enhancement Using A Human Visual System Model [J]. Pattern Recognition, 1997, 30 (12): 2001-2014.
  • 7Canny J. A Computation Approach to Edge Detection [J]. IEEE Trans on PAMI, 1986, 8 (6): 679-698.

二级参考文献1

  • 1吴立德,模式识别与人工智能,1992年,5卷,261页

共引文献10

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部