期刊文献+

基于混沌的高速随机数发生器 被引量:1

A High Speed Chaos-Based Random Number Generator
下载PDF
导出
摘要 基于混沌的随机数发生器采用了离散时间的决定论混沌系统。决定论混沌的一个本质特征是对初始值的敏感依赖性。由于初始值是一个模拟电路的初值,对于数字测量系统是永远无法逼近或达到的,它的偏差使得测量系统产生的符号序列以后有着充分大的分离,从而使得符号序列不可预知、不可再现,具有真随机的特性。在分析了一类分段线性映射的决定论混沌系统的基本特性后,设计了由开关电容电路等组成的模拟电路。为了保证随机序列的分布特性,针对CMOS电路中主要的噪声,即MOS管的热噪声与闪烁噪声,设计时建立了二种噪声仿真模型;同时为了加快分析的效率和速度,提出了一种快速分析方法。最后,采用NIST标准进行了测试。 A deterministic chaotic discrete time dynamical system can be used for random number generator (RNG). Initial condition sensitivity is the key characteristic of deterministic chaos. As initial condition is an analog value in the circuit, it will never be approached or reached in the digital measuring system. Small difference of initial value between symbol sequences generated by the measuring system will develop into great difference between later items of symbol sequences as to lead two sequences separate fully. Therefore, the symbol trajectory will never be predicted or reproduced. After analyzing the basic characteristic of a Piecewise Linearity Mapping, a design of analog circuits including switched capacitors is presented. To verify the expected distribution of the random number generated by the circuit, the dominating CMOS noise was studied with two noise models (thermal and flicker). To speed up the circuit simulation, a fast simulation method is proposed. Finally, the experimental result of the RNG in accordance with NIST (National Institute of Standards and Technology) standard was provided.
出处 《电路与系统学报》 CSCD 2003年第5期92-96,共5页 Journal of Circuits and Systems
基金 国家863计划资助课题(2001AA141050)
关键词 随机数发生器 混沌 噪声模型 Random Number Generator Chaos Noise Model
  • 相关文献

参考文献7

  • 1Petrie C S, Connelly J A. A noise-based IC random number generator for applications in cryptography [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000-05, 47(5): 615-621.
  • 2Petrie C S, Connelly J A. Modeling and simulation of oscillator-based random number generators [A]. IEEE International Symposium on Circuits and Systems [C]. 1996-05,4: 324-327.
  • 3Cui Wei, Chen He, Han Yueqiu. VLSI implementation of universal random number generator [A]. 2002 Asia-Pacific Conference on Circuits and Systems [C]. 2002, 1: 465-470.
  • 4Broersen P M T, S de Waele. Monitoring and detection with time series models [A]. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference [C]. 2001, 3: 1548-1553.
  • 5Fadili M J, Bullmore E T, Brett M. Wavelet methods for characterising mono- and poly-fractal noise structures in shortish time series: an application to functional MRI [A]. Proceedings of the International Conference on Image Processing [C]. 2001, 2: 225-228.
  • 6Bonani F, Guerrieri S D, Ghione G. Noise source modeling for cyclostationary noise analysis in large-signal device operation [J]. IEEE Transactions on Electron Devices, 2002-09, 49 (9): 1640-1647.
  • 7Hsu C S, Kim M C. Construction of maps with generating partitions for entropy eval-uation [J]. Physical Review A, 1985, 31 (5): 3253-3265.

同被引文献7

  • 1胡经畲,荆木春.电路容差分析及其在型号工程中的应用[J].质量与可靠性,1994(6):34-36. 被引量:1
  • 2Jacob R,Baker, Harry, et al. CMOS Circuit Design, Layout, mad Simulation[M]. New York: IEEE, 1997. 481.
  • 3Gray P R, Hurst P J. Analysis and Design of Analog Integrated Circuit, 4rd[M]. New York: John Wiley and Sons Publishers, 2001. 446-453.
  • 4Gray P R, Meyer R G. MOS operational amplifier design-A tutorial overview[J].IEEE Journal of SoLID-State Circuits,1982,17(6) :969-982.
  • 5Gerosa A, Bernardini R, Pietri S. A fully integrated 8-bit, 20 MHz, truly random numbers generator, based on a chaotic system [A]. Austin: Proceeding of SSMSSD-01, 2001.87-92.
  • 6Andrew Rukhin, Juan Soto, James Nechvatal, et al. Tatistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications[M]. Gaithersburg:NIST Special Publication,2000. 64-96.
  • 7沈海斌,李晓明,俞俊,潘雪增,严晓浪.随机数发生器的噪声模型与快速仿真[J].系统仿真学报,2004,16(4):800-802. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部