期刊文献+

基于积分方法的二维平行剪切层声远场预测

FAR SOUND FIELD PREDICTION OF A 2-D PARALLEL SHEAR LAYER BASING ON AN INTE- GRATION METHODOLOGY
下载PDF
导出
摘要 本文采用二维Ffowcs Williams&Hawkings(FW-H)方程对平行剪切层远声场辐射特性进行了研究。近流场时间精确数据通过计算气动声学(Computational Aeroacoustics,CAA)技术数值模拟获得,声远场信息则通过FW-H方程对近流场内的可穿透积分面进行积分获得。该方法首先采用具有解析解的涡/尾缘干涉问题进行了校核,进一步采用CAA/FW-H匹配技术对二维平行剪切层声辐射问题进行了预测,计算结果表明,积分解与计算域内的CAA数值解吻合较好。 The far sound field of a 2-D parallel shear layer is studied basing on the Ffowcs Williams & Hawkings(FW-H) Equation. The time accurate near flow field data are numerically simulated by a Computational Aeroacoustics (CAA) technique. Then the far sound field information is calculated from a near field penetrable surface through FW-H integration. This procedure is firstly validated by vortex/trailing edge interaction problem with an analytical solution. Furthermore, the sound radiation from a 2-D parallel shear layer is predicted by the CAA/FW-H matching technique. Numerical results show that the integration results agree rather well with CAA solutions.
作者 于潮 李晓东
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2003年第6期939-942,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.NSFC-50076002) 航空基础科学基金(No.ASFC-01C51036)
关键词 FW-H方程 计算气动声学 涡/尾缘干涉 剪切层 FW-H equation CAA vortex/trailing edge interaction shear layer
  • 相关文献

参考文献11

  • 1李晓东,高军辉.二维平行剪切层声波产生和辐射的数值模拟[J].航空学报,2003,24(1):6-9. 被引量:7
  • 2Ffowcs Williams J E, Hawkings D L. Sound Generated by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transactions of the Royal Society, 1969, A264(1151):321-342.
  • 3Long L N. Frederic Souliez and Anupam Sharma. Aerodynamic Noise Prediction Using Parallel Methods on Unstructured Grids. AIAA 2001-2196, 2001.
  • 4Lockard D P. An Efficient, Two-dimensional Implementation of the Ffowcs Williams and Hawkings Equation. J of Sound and Vibration, 2000, 229(4): 897-911.
  • 5Guo Y P. Application of the Ffowcs Williams/Hawkings Equation to Two-dimensional Problems. J Fluid Mech,2000, 403:201-221.
  • 6Crighton D G, Dowling A P, Ffowcs Williams J E, et al.Modern Methods in Analytical Acoustics. 33-342. London: Springer-Verlag, 1992, Chapter 11.
  • 7Crighton D G. Radiation from Vortex Filament Motion Near a Half Plane. J Fluid Mech, 1972, 51: Part 2,357-362.
  • 8Howe M S. Contribution to the Theory of Aerodynamics Sound, with Application to Excess Jet Noise and the Theory of the Flute. J Fluid Mech, 1975, 71: Part 4,625-673.
  • 9Howe M S. Emendation of the Brown & Michael Equation, with Application to Sound Generation by Vortex Motion Near a Half-Plane. J Fluid Mech, 1996, 329:89-101.
  • 10Li X D, Thiele F. Numerical Computation of the Generation and Radiation of Acoustic Waves from a 2-D Share Layer. NASA CP 2000-209790, 2000, 323-329.

二级参考文献10

  • 1Li X D, Thiele F. Numerical computation of the generation and radiation of acoustic waves from a 2-D shear layer[R]. NASA CP-2000-209790,2000. 323-329.
  • 2Tam C K. Excitation of instability waves in a two dimensional shear layer by sound[J]. Journal of Fluid Mechanics, 1978, 89: 357-371.
  • 3Tam C K W, Webb J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of Computational Physics, 1993, 107(2): 262-281.
  • 4Hu F Q. Hussaini M Y, Manthey J L. Low-Dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1996, 124(1): 177-191.
  • 5Tam C K W, Webb J C, Dong T Z. A study of the short wave components in computational acoustics[J]. Journal of Computational Acoustics, 1993, 1:1-30.
  • 6Thompson K W. Time dependent boundary conditions for hyperbolic systemsy[J]. Journal of Computational Physics, 1990, 89(2): 439-461.
  • 7Bayliss A, Turkel E. Far field boundary conditions for compressible flows[J]. Journal of Computational Physics, 1982, 48(2): 182-199.
  • 8Li X D, Xue L P, Yan J P, et al. Parallel computation of duct acoustics by computational acoustics approach[R]. AIAA 99-1819,1999.
  • 9Li X D, Yan J P, Rung T, et al.Numerical simulation of duct inlet noise[J]. CFD Journal, 2000, 9(1):485-491.
  • 10Dahl M D. Solution to the category 5 problem: Generation and radiation of acoustic waves from a 2D shear layer[R]. NASA CP-2000-209790,2000, 87-92.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部