期刊文献+

一种控制界面参数插值的新方法 被引量:3

A NEW NUMERICAL INTERPOLATION METHOD FOR DIFFUSION COEFFICIENTS AT INTERFACES
下载PDF
导出
摘要 通过对有限容积法界面插值的分析,提出了一种较调和平均法更为直接、更为有效的用于计算控制容积法控制界面参数的插值方法,并给出了调和平均法失效的算例。数值算例表明,本文方法与Kirchhoff变换法相比具有相当的精度,但又不像Kirchhoff变换法那样需要完成大量的积分运算,计算工作量小,简单可靠。 Various interpolation methods for diffusion coefficients at control volume surfaces are briefly discussed and extensively compared with the analytical solutions of both pure diffusion and convection-diffusion problems in this paper. It is found that the harmonic mean method is not as accurate and reliable as it is supposed to be. A new method is thus developed by careful re-examination of the exact meaning of the definition of these control surface diffusion coefficients. The extensive numerical comparisons are given for both the harmonic mean and the present method and the results show that the method proposed in this paper is accurate, reliable and easy to use.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2003年第6期1031-1033,共3页 Journal of Engineering Thermophysics
基金 国家973项目(No.G2000026306) 国家自然科学基金(No.50276001) 北京市自然科学基金(No.3032007) 北京市教委重点实验室项目(No.KP05040102)
关键词 扩散系数 不连续性 数值方法 控制容积法 diffusion coefficient discontinuity numerical treatment control volume method
  • 相关文献

参考文献3

  • 1Patankar S V. A Numerical Method for Conduction in Composite Materials, Flow in Irregular Geometries and Conjugate Heat Transfer. In: Proc 6^th Int Heat Transfer Conf. Washington D. C.: Hemisphere, 1978. 3: 297-302.
  • 2Chang K C, Payne U J. Numerical Treatment of Diffusion Coefficients at Interfaces. Numerical Heat Transfer, Part A, 1992, 21:363-376.
  • 3Voller V R, Swaminathan C R. Treatment of Discontinuous Thermal Conductivity in Control-Volume Solutions of Phase-Change Problems. Numerical Heat Transfer, Part B, 1993, 24:161-180.

同被引文献23

  • 1Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics. The finite volume method [M]. Essex: Longman Scientific & Technical, 1995: 87.
  • 2Patankar S V. A numerical method for conduction in composite materials, flow in irregular geometries and conjugate heat transfer [C] //Proceeding of Sixth International Heat Transfer Conference, Toronto, Canada, 1978: 297-302.
  • 3Chang K C, Payne U J.Numerical treatment of diffusion coefficient at interfaces [J]. Numerical Heat Transfer, Part A, 1992,21 (3): 363-376.
  • 4Voller V R, Swaminathan C R. Treatment of discontinuous thermal conductivity in control-volume solutions of phase-change problems [J]. Numerical Heat Transfer, PartB, 1993,24 (2): 161-180.
  • 5Voller V R. Numerical treatment of rapidly changing and discontinuous conduetivities[J].Intemational J of Heat and Mass Transfer, 2001,44 (23): 4553-4556.
  • 6Date A W, Introduction to computational fluid dynamics [M]. New York: Cambridge university press, 2005: 17-47.
  • 7Patankar S V. Numerical heat transfer and fluid flow [M]. New York: Hemisphere, 1980: 44-47.
  • 8Versteeg H K, Malalasckera W. An introduction to computational fluid dynamics, The finite volume method [ M ]. Essex Longman Scientific & Technical, 1995: 87.
  • 9Patankar S V. Numerical heat transfer and fluid flow[ M ]. New York: Hemisphere, 1980: 41-74.
  • 10Chang K C, Payne U J. Numerical treatment of diffusion coefficient at interfaces[ J]. Numerical Heat Transfer,Part A, 1992,21: 363- 376.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部