期刊文献+

卫星星座系统多学科设计优化研究 被引量:10

Multidisciplinary design optimization of satellite constellation system
下载PDF
导出
摘要 分析了卫星星座系统设计包含的星座设计、卫星设计、发射选择等学科之间的耦合关系,特别是卫星各分系统之间的耦合关系,建立了包括发射费用分析、成本分析在内的卫星星座系统多学科分析模型。在此基础上,采用分布式协同进化MDO算法,将星座设计优化和卫星的设计优化在自治基础上充分协同,对一个同时包含离散/连续设计变量、需进行星座结构和参数同时优化的虚拟的海洋监视卫星星座系统进行了多学科设计优化。算法对离散设计变量采用二进制编码,连续设计变量采用实数编码,并分别采用相应的进化算子。采用最大长度编码,根据一定的规则确定基因的显性和隐性,来处理结构和参数同时优化引起的设计变量维数可变的问题。设计结果显示了多学科设计优化的优势和分布式协同进化MDO算法对卫星星座系统这样的复杂多学科设计优化问题的有效性。 In this paper,we analyzed the coupling relationships among constellation design,satellite design,launch selection,and especially among satellite subsystems involved in the satellite constellation system design problem.Multidisciplinary analysis models including launch cost and satellite cost analysis were constructed.Then,we used the distributed coevolutionary multidisciplinary design optimization (DCMDO) algorithm to solve a virtual sea surveillance constellation system design problem,where constellation design optimization and satellite design optimization were cooperated well,meanwhile their autonomy were remained.The design problem has both discrete and continuous variables.We adopt binary coding for discrete variables and real coding for continuous variables,and corresponding evolution operators for each part of the chromosome.The design problem needs simultaneously optimization of constellation structure and parameters.This caused a variable dimension optimization problem.It was handled by using maximum length gene representation and setting some genes to be recessive according to given rules.Result shows the advantage of multidisciplinary design optimization and the effectiveness of DCMDO algorithm in the complex satellite constellation system design problem.
出处 《宇航学报》 EI CAS CSCD 北大核心 2003年第5期502-509,533,共9页 Journal of Astronautics
关键词 卫星系统 卫星星座 卫星设计 多学科设计优化 协同进化算法 Satellite system Satellite constellation Satellite design Multidisciplinary design optimization Coevolutionary algorithms
  • 相关文献

参考文献7

  • 1Bearden D A Boudreault R Wertz J R.潘科炎译.成本模型:降低航天任务成本:第8章[M].,..
  • 2陈琪锋,戴金海.异步并行的分布式协同进化MDO算法研究[J].宇航学报,2002,23(4):57-61. 被引量:8
  • 3Thomas Philip Runarsson, Xin Yao. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation,2000,4 (3):284-294.
  • 4Wiley J. Larson,James R. Wertz. Space Mission Analysis and Design (Second Edition). Published jointly by Microcosm,Inc. and Kluwer Academic Publishers, 1992.
  • 5Todd Mosher. Spacecraft Design Using A Genetic Algorithm Optimization Approach. 1998 IEEE Aerospace Conference.Vol. 3:123-134.
  • 6Ellen Riddle Taylor. Evaluation of multidisciplinary design optimization techniques as applied to the spacecraft design process. PhD dissertation,University of Colorado at Boulder,1999.
  • 7Budianto I,Olds J. A Collaborative Optimization Approach to Design and Deployment of a Space Based Infrared System Constellation. IEEE P335E, 2000 IEEE Aerospace Conference.

二级参考文献2

  • 1睢英 胡克娴.固体火箭发动机[M].北京:北京理工大学出版社,1990..
  • 2《7210任务》办公室.航空气动力手册(第二册)[M].北京:国防工业出版社,1983..

共引文献7

同被引文献85

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部