期刊文献+

基于分类树方法的土壤有机质空间制图研究 被引量:9

SOIL ORGANIC MATTER MAPPING BASED ON CLASSIFICATION TREE MODELING
下载PDF
导出
摘要 以浙江省龙游县研究区为例 ,提供了一种推断和表达土壤有机质 (OM)含量空间分布信息的方法 ,通过一种数据挖掘方法———分类树建模方法将土壤OM含量与一些易于广泛观测的景观属性 ,包括地形、地质、土地利用和遥感影像建立联系 ,从而将有关土壤OM含量分布的知识转入一种清楚的、定量的、与景观因子相关联的规则系统中 ,并以此来预测研究区土壤OM水平的连续空间分布。树分析选取了高程、岩石类型、土属类型、PC4 、PC2 、土地利用类型、PC3、PC1、上坡贡献面积、坡度、坡向、平面曲率和剖面曲率来预测研究区土壤OM等级的分布。其中 ,高程、岩石类型、土属类型和反映植被覆盖度的PC4 、PC2 以及土地利用类型对于研究区土壤OM等级预测更为重要。从分析结果来看 。 Based on the case study of Longyou County,Zhejiang Province,an approach was introduced to deducing and expressing spatial distribution of soil organic matter. This is a kind of data mining method or classification tree modeling method,which associates soil OM content with some extensive easily observable landscape attributes,such as landform,geology,landuse and remote sensing images,thus transferring the soil OM-related information into a clear,quantitative,landscape factor-associated regular system. This system can be used to predict continuous soil OM spatial distribution. By analyzing the factors such as elevation,type of the rock,type of the soil,PC 4,PC 2,land uses,PC 3,PC 1,upslope contributing area,slope,exposure,plane curvature and profile curvature,the classification tree can predict distribution of soil organic matter levels. Among the factors,elevation,type of rock,type of soil,landuse,PC 4 and PC 2 (two indexes of vegetation coverage) are considered as the most important variables for predicting soil OM. Results of the prediction show a quite close relationship between soil OM contents and types of the landscape sorted by the classification tree with an accuracy of 81.1%.
出处 《土壤学报》 CAS CSCD 北大核心 2003年第6期801-808,共8页 Acta Pedologica Sinica
基金 国家自然科学基金项目 (4 0 1 0 1 0 1 4和 40 0 0 1 0 0 8)资
关键词 分类树方法 土壤有机质 空间制图 数据挖掘方法 建模方法 景观属性 Data mining,Classification tree,Soil OM,Spatial prediction,Landscape modeling
  • 相关文献

参考文献12

  • 1胡克林,李保国,林启美,李贵桐,陈德立.农田土壤养分的空间变异性特征[J].农业工程学报,1999,15(3):33-38. 被引量:268
  • 2Webster R, Oliver M A. Optimal interpolation and isarithmic mapping of soil properties:VI. Disjunctive kriging and mapping the conditional probability. J Soil Sci ,1989,40:497 - 512.
  • 3Goovaerts P. Geostatistics in soil science: State-of-the-art and perspectives. Geoderma, 1999,89( 1/2):1 -45.
  • 4McBratney A B,Odeh I O A,Bishop T F A,et al. An overview of pedometric techniques for use in soil survey. Geoderma,2000,97:293 - 327.
  • 5Hall G F,Olson C G. Predicting variability of soils from landscape models. In: Mausbach M J,Wilding L P. ed. Spatial Variabilities of Soils and Landforms. SSSA Spec. Publ. 28. SSSA,Madison,WI. 1991. 9 - 24.
  • 6Lammers R B, Band L E. Automated object description of drainage basin. Comput Geosci , 1990,16 : 787 - 810.
  • 7Skidmore A K, Wafford F, Luekananunlg P, et al. An operational GIS expert system for mapping forest soils. Photogrammetric Engineering & Remote Sensing, 1996,62(5) :501 - 511.
  • 8Skidmore A K, Ryan P J, Dawes W, et al. Use of an expert system to map forest soils from a geographical information system.Int J Geographical Information Systems, 1991,5(4) :431 - 445.
  • 9Cook S E,Corner R J,Grealish G, et al. A rule-based system to map soil properties. Soil Sci Soc Am J , 1996,60:1 893 - 1 900.
  • 10Moore I D,Gessler P E,Nielsen G A,et al. Soil attribute prediction using terrain analysis. Soil Sci Soc Am J ,1993,57 : 443 - 452.

二级参考文献2

共引文献267

同被引文献119

引证文献9

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部