期刊文献+

不等重复系统分组试验设计分析

Analysis of nested design with unbalanced subclass numbers
下载PDF
导出
摘要  对普通最小二乘法和加权最小二乘法在不等重复单因素系统分组试验中的分析效果进行了比较研究。前者以组平均数为基础进行方差分析,后者以原单个数据为基础并采用KENWARDROGER法确定自由度进行分析。通过分析和模拟研究,结果表明,在数据不平衡性较小时,两种方法分析的结果相近,且一类统计错误率控制性较好;在数据不平衡性较大时,加权最小二乘法的一类统计错误率偏差比普通最小二乘法的小。因此,建议在遇到不等重复系统分组试验资料时,宜采用加权最小二乘法进行分析。 In this paper,the effects of OLS method and WLS method in analysis of one-way nested design with unequal subclass numbers are examined.The first method is to subject the cell means to an analysis of variance,the second method uses the individual observations and KENWARDROGER approximation for calculation of degree of freedom.The analysis and simulation results showed that the results of the two methods were similar and the type one errors were well controlled when the data were lightly unbalanced;when the data were severely unbalanced,the WLS method was robuster than the OLS method.It is suggested that,in cases of unbalanced data,the WLS method is to be used.
作者 胡希远
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2003年第B10期101-105,共5页 Journal of Northwest A&F University(Natural Science Edition)
基金 西北农林科技大学校长基金资助项目
关键词 不等重复 系统分组 试验设计 普通最小二乘法 加权最小二乘法 农业试验 unequal subclass number nested design OLS WLS
  • 相关文献

参考文献8

  • 1Finney D J. The estimation of parameters by last squares from unbalanced experiments[J]. J Agric Sci Camb, 1980,95:181-189.
  • 2Piepho H P. Analysis of randomized block design with unequal subclass numbers[J]. Agronomy of Journal, 1997,89: 718-723.
  • 3Milliken G A, Johnson D E. Analysis of Messy Data[M]. New York:Van Nostrand Reinhold, 1984.
  • 4Henderson C R. Application of Linear Models in Animal Breeding[M]. Guelph: University of Guelph, 1984.
  • 5Mclean R A,Sanders W W,Stroup W W. A unified approach to mixed linear models[J]. The American Statistician, 1991,145:54-65.
  • 6Searle S R,Casella G,McCulloch C E. Variance Components[M]. New York:John Wiley and Sons ,Ine,1992.
  • 7Harville D A. Maximum likelihood approaches to variance component estimation and to related problems[J]. Journal of the American Statistical Association, 1977,72 : 320- 338.
  • 8Kenward M G, Roger J H. Small Sample Inference for fixed effects from restricted maximum likelihood[J]. Biometrics, 1997,53: 983-997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部