摘要
设D,D1 和D2 是实有限可除代数,Mmn(D)是D上所有m ×n矩阵的R线性空间. 若两个R线性算子f:Mm n(D1)→Mmn(D2) 和g:Mnm (D1) →Mnm (D2)满足f(A)+ = g(A+ )对于一切的A∈Mm n(D1)均成立,则称(f, g) 是一个保矩阵MP逆的共变算子对. 当m in(m , n)2时,本文刻划了所有这种共变算子对(f, g) 的结构.
Suppose D, D 1 and D 2 are real finite dimensional division algebras. Let M mn (D) be the R linear space of all m×n matrices over D , and let f:M mn (D 1)→M mn (D 2) and g:M nm (D 1)→M nm (D 2) be two R linear operators. If f(A) +=g(A +) for all A in M mn (D 1), then we call (f,g) a Covariant Operators Pair on Moore Penrose inverses of matrices. In this paper we characterize Covariant Operators Pairs (f,g) when min (m,n)2.
出处
《数学研究》
CSCD
1999年第3期245-252,共8页
Journal of Mathematical Study