Two Characterizations of Diffeomorphisms of Euclidean Space
Two Characterizations of Diffeomorphisms of Euclidean Space
摘要
Two characterizations for a local diffeomorphism of R^n to be global one aregiven in terms of associated Wazewski equations. The two characterizations could be useful for theinvestigation of the Jacobian conjecture.
Two characterizations for a local diffeomorphism of R^n to be global one aregiven in terms of associated Wazewski equations. The two characterizations could be useful for theinvestigation of the Jacobian conjecture.
参考文献13
-
1Hadamard J. Sur les transformations pontuelles. Bulletin de la Socidtd Mathdmatique de France, 34,71-84 (1906).
-
2Feβer, R. A proof of the two dimensional Markus-Yamabe stability conjecture. Annales Polonical Mathematici, 62, 45-75 (1995).
-
3Gutierrez C. A solution to the bidimensional global asysmptotic stability conjecture. Ann Inst Henri Poincard, 12(6), 627-671 (1995).
-
4Essen A. van den: Automorphisms of affine spaces, Edited by Arno van den Essen, Kluwer Academic Publishers, 3-39 (1995).
-
5Wazewski T. Sur I'evaluation d'existence des fonctions implicites reelles ou complexes. Ann Soc Polon Math, 20, 81-120 (1947).
-
6Zambieri G. Finding domains of invertibiblity for smooth functions by means of attraction basins. Journal of Differentail Equations, 104, 11-19 (1993).
-
7Gasull A, Llibre J, Sotomayor J. Global asymptotic stability of differential equations in the plane.Journal of Differential Equations, 91,327-335 (1991).
-
8Hartman P. Ordinarv Differential Eouations, 2nd edition, Birkhauser (1982).
-
9Sabatini M. An extension to Hadamard global inverse function theorem in the plane. Nonlinear Analysis,Theory, Methods and Applications, 20, 1069-1077 (1993).
-
10Campbell L A. Partial properness amd real planar maps. Appl Math Lett, 9(5), 99-105 (1996).
-
1赵开明.整环上二元多项或代数的自同构[J].数学年刊(A辑),1995,1(4):488-494.
-
2Xiaobo LIU.Quantum Hyperbolic Invariants for Diffeomorphisms of Small Surfaces[J].Acta Mathematica Sinica,English Series,2012,28(4):759-770.
-
3Manseob LEE.The Barycenter Property for Robust and Generic Diffeomorphisms[J].Acta Mathematica Sinica,English Series,2016,32(8):975-981.
-
4孙文祥.Entropy for frame bundle systems and Grassmann bundle systems induced by a diffeomorphism[J].Science China Mathematics,2002,45(9):1147-1153.
-
5Michiel de Bondt,Dan Yan.Irreducibility Properties of Keller Maps[J].Algebra Colloquium,2016,23(4):663-680.
-
6Yangyou Pan,Xiang Zhang.EMBEDDING FLOWS OF DIFFEOMORPHISMS[J].Annals of Differential Equations,2014,30(2):166-173.
-
7于棋.雅可比猜想的思想与进展[J].科技经济导刊,2016(17).
-
8Manseob LEE,Xiao WEN.Diffeomorphisms with C^1-stably Average Shadowing[J].Acta Mathematica Sinica,English Series,2013,29(1):85-92. 被引量:2
-
9李伟固,章梅荣.Rigidity result on conjugacies of families of diffeomorphisms[J].Science China Mathematics,1997,40(10):1036-1044.
-
10田卫东.Dixmer猜想[J].数学学报(中文版),1993,36(6):746-750.