期刊文献+

Two Characterizations of Diffeomorphisms of Euclidean Space

Two Characterizations of Diffeomorphisms of Euclidean Space
原文传递
导出
摘要 Two characterizations for a local diffeomorphism of R^n to be global one aregiven in terms of associated Wazewski equations. The two characterizations could be useful for theinvestigation of the Jacobian conjecture. Two characterizations for a local diffeomorphism of R^n to be global one aregiven in terms of associated Wazewski equations. The two characterizations could be useful for theinvestigation of the Jacobian conjecture.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第4期739-744,共6页 数学学报(英文版)
关键词 COMPLETENESS DIFFEOMORPHISM Jacobian conjecture properness completeness diffeomorphism Jacobian conjecture properness
  • 相关文献

参考文献13

  • 1Hadamard J. Sur les transformations pontuelles. Bulletin de la Socidtd Mathdmatique de France, 34,71-84 (1906).
  • 2Feβer, R. A proof of the two dimensional Markus-Yamabe stability conjecture. Annales Polonical Mathematici, 62, 45-75 (1995).
  • 3Gutierrez C. A solution to the bidimensional global asysmptotic stability conjecture. Ann Inst Henri Poincard, 12(6), 627-671 (1995).
  • 4Essen A. van den: Automorphisms of affine spaces, Edited by Arno van den Essen, Kluwer Academic Publishers, 3-39 (1995).
  • 5Wazewski T. Sur I'evaluation d'existence des fonctions implicites reelles ou complexes. Ann Soc Polon Math, 20, 81-120 (1947).
  • 6Zambieri G. Finding domains of invertibiblity for smooth functions by means of attraction basins. Journal of Differentail Equations, 104, 11-19 (1993).
  • 7Gasull A, Llibre J, Sotomayor J. Global asymptotic stability of differential equations in the plane.Journal of Differential Equations, 91,327-335 (1991).
  • 8Hartman P. Ordinarv Differential Eouations, 2nd edition, Birkhauser (1982).
  • 9Sabatini M. An extension to Hadamard global inverse function theorem in the plane. Nonlinear Analysis,Theory, Methods and Applications, 20, 1069-1077 (1993).
  • 10Campbell L A. Partial properness amd real planar maps. Appl Math Lett, 9(5), 99-105 (1996).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部