期刊文献+

Homological Perturbation Theory and Mirror Symmetry

Homological Perturbation Theory and Mirror Symmetry
原文传递
导出
摘要 We explain how deformation theories of geometric objects such as complexstructures, Poisson structures and holomorphic bundle structures lead to differential Gerstenhaberor Poisson algebras. We use homological perturbation theory to construct A_∞ algebra structures onthe cohomology, and their canonically defined deformation. Such constructions are used to formulatea version of A_∞ algebraic mirror symmetry. We explain how deformation theories of geometric objects such as complexstructures, Poisson structures and holomorphic bundle structures lead to differential Gerstenhaberor Poisson algebras. We use homological perturbation theory to construct A_∞ algebra structures onthe cohomology, and their canonically defined deformation. Such constructions are used to formulatea version of A_∞ algebraic mirror symmetry.
作者 JianZHOU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第4期695-714,共20页 数学学报(英文版)
关键词 homological perturbation theory mirror symmetry homological perturbation theory mirror symmetry
  • 相关文献

参考文献46

  • 1Yau S T ed. Essays on mirror manifolds. International Press, Hong Kong, 1992.
  • 2Bershadsky M, Cecotti J, Ooguri H, Vafa C. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Comm Math Phys, 165(2), 311-427 (1994).
  • 3Bershadsky M, Sadov D. Theory of Kahler gravity. Internat J Modern Phys A, 11(26) 4689-4730(1996).
  • 4Goldman W M, Millsos J J. The homotopy invariance of the Huranishi space. Illinois J Math, 34(2),397-368 (1990).
  • 5Cao H D, Zhou J. DGBV algebras and mirror symmetry, First International Congress of Chinese Mathematicians, Beijing, 279-289, 1998.
  • 6Cao H D, Zhou J. Frobenius manifold structure on Dolbeault cohomology and mirror symmetry. Comm Anal Geom, 8(4), 795-808 (2000).
  • 7Cao H D, Zhou J. Identification of two Frobenius manifolds. Math Res Lett, 6(6), 17-29 (1996).
  • 8Cao H D, Zhou J. Formal Frobenius manifold structure on equivariant cohomology. Commun Contemp Math , 1(4), 535-582 (1999).
  • 9Cao H D, Zhou J. On quasi-isomorphic DGBV algebras, Math. DG/9904168.
  • 10Stasheff J D. Homotopy associativity of H-spaces Ⅱ. Trans Amer Math Soc, 108, 293-312 (1963).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部