摘要
We explain how deformation theories of geometric objects such as complexstructures, Poisson structures and holomorphic bundle structures lead to differential Gerstenhaberor Poisson algebras. We use homological perturbation theory to construct A_∞ algebra structures onthe cohomology, and their canonically defined deformation. Such constructions are used to formulatea version of A_∞ algebraic mirror symmetry.
We explain how deformation theories of geometric objects such as complexstructures, Poisson structures and holomorphic bundle structures lead to differential Gerstenhaberor Poisson algebras. We use homological perturbation theory to construct A_∞ algebra structures onthe cohomology, and their canonically defined deformation. Such constructions are used to formulatea version of A_∞ algebraic mirror symmetry.