期刊文献+

无需跟踪的场景事件识别(英文)

Scene Event Recognition Without Tracking
下载PDF
导出
摘要 提出了一种用于视觉监控中行为识别的新颖方法 .该方法将相应于目标行为的场景事件建模为一组使用PCH (PixelChangeHistories)检测的自治像素级事件 .结合基于改进的MDL(MinimumDescriptionLength)的自动模型规则选择 ,EM (Expectation Maximisation)算法被采用来聚类这些像素级的自治事件成为语义上更有意义的区域级的场景事件 .该方法是计算上有效的 。 We present a novel approach to behaviour recognition in visual surveillance under which scene events corresponding to object behaviours are modelled as groups of affiliated autonomous pixel-level events automatically detected using Pixel Change Histories (PCHs). The Expectation-Maximisation (EM) algorithm is employed to cluster these pixel-level events into semantically more meaningful blob-level scene events, with automatic model order selection using modified Minimum Description Length (MDL). The method is computationally efficient allowing for real-time performance. Experiments are presented to demonstrate the effectiveness of recognising these scene events without object trajectory matching.
出处 《自动化学报》 EI CSCD 北大核心 2003年第3期321-331,共11页 Acta Automatica Sinica
基金 SupportedbytheUKEPSRCandDTIundertheManagementofInformationProgramme
关键词 场景事件识别 行为识别 视觉监控 自治像素级事件 计算机 Activity and behaviour recognition event recognition event versus trajectory based representation
  • 相关文献

参考文献20

  • 1Gong S, Ng J, Sherrah J. On the semantics of visual behaviour,structured events and trajectories of human action.Image and Vision Computing, 2002,20(12) : 873 - 888.
  • 2Aggarwal J K,Cai Q. Human motion analysis:A review. Computer Vision and Image Understanding, 1999, 73(3):428 - 440.
  • 3Gavrila D M. The visual analysis of human movement:A survey. Computer Vision and Image Understanding, 1999,73(1) ,82-98.
  • 4Buxton H, Gong S. Visual surveillance in a dynamic and uncertain world. Artificial Intelligence, 1995,78(3):431-459.
  • 5Moeslund T, Granum E. A survey of computer vision-based human motion capture. Computer Vision and Image Understanding, 2001,81(3) : 231 -268.
  • 6Gong S, Buxton H. On the visual expectations of moving objects: A probabilistic approac with augmented hidden Markov models. In: Proceedings of European Conference on Artificial Intelligence, Austria: Vienna, 1992. 781- 786.
  • 7Haritaoglu I, Harwood D, Davis L S. W4:Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):809-830.
  • 8Intille S, Davis J, Bobick A. Real-time closed-world tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, 1997. 697-703.
  • 9McKenna S, Jabri S, Duric Z, Rosenfeld A, Wechsler H. Tracking group of people. Computer Vision and Image Understanding, 2000.80 ( 1 ) : 42 - 56.
  • 10Stauffer C, Grimson W. I.earning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8) : 747-758.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部