期刊文献+

摄像机运动情况下的运动对象检测(英文) 被引量:3

Fast Moving-Object Detection with a Moving Camera
下载PDF
导出
摘要 在监控应用中 ,由于场景是已知的 ,因此可以使用背景减去法检测运动对象 .当摄像机进行扫描和倾斜运动时 ,需要使用多个图像帧才能完整地表示监控场景 .如何组织和索引这些背景帧属于摄像机跟踪问题 .提出一种无需摄像机标定的背景帧索引和访问方法 .这一方法需要使用图像配准技术估计图像初始运动参数 .提出一种屏蔽外点的图像配准算法 ,综合利用线性回归和稳健回归快速估计初始运动参数 .为了快速计算连续帧之间的运动参数 ,提出一种基于四参数模型的优化算法 .利用非参数背景维护模型抑制虚假运动象素 . In the surveillance applications, the scenes are known. So background subtraction can be used to detect the moving pixels. As a panning-tilting camera is used, several video frames are needed to represent the scene of surveillance. How to organize and index these frames to represent the background of surveillance belongs to the problem of camera tracking. We propose a simple camera tracking approach that makes it easy to determine a frame as the current background without the need of camera calibration. This approach needs estimating the initial motion parameters by the technology of image registration. We propose a fast and robust method for registering the current frame and the background frame, by combining the linear regression and the robust regression on the basis of masking the outliers. To fast estimate the motion parameters between two adjacent frames, an optimized algorithm for motion tracking with the 4-parameter model is given. A non-parametric model of background maintenance is introduced to reject the false alarms. Finally, we present experimental results in two applications demonstrating the effectiveness and efficiency of our methods.
出处 《自动化学报》 EI CSCD 北大核心 2003年第3期472-480,共9页 Acta Automatica Sinica
基金 SupportedbyNationalNaturalScienceFoundationofP .R .China( 60 0 75 0 0 6)
关键词 图像配准算法 图像帧 运动对象检测 摄像机 背景减去法 Moving object detection surveillance image registration background subtraction
  • 相关文献

参考文献24

  • 1Iketani A, Nagai A, Kuno Y , Shirai Y. Real time surveillance system detecting persons in complex scenes. In:Proceedings of Image Analysis and Processing, IEEE Computer Society,1999. 1112-1115.
  • 2Barron J,Fleet D, Beauchemin S. Performance of optical flow techniques. International Journal of Computer Vision, 1994, 12(1): 42-77.
  • 3Anderson C, Burt P, van der Wal G. Change detection and tracking using pyramid transformation techniques. In:Proceedings of SPIE-Intelligent Robots and Computer Vision, SPIE Press, 1985. 72-78.
  • 4Wildes R P. A measure of motion salience for surveillance applications. In: Proceedings of Image Processing, ICIP 98, IEEE Computer Society, 1998. 183-187.
  • 5Dani P, Chaudhuri S. Automated assembling of images: Image montage preparation. Pattern Recognition, 1995, 28(3), 431-445.
  • 6Zoghlami I, Faugeras O, Deriche R. Using geometric corners to build a 2d mosaic from a set of images. In: Proceedinns of lEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 1997. 420-425.
  • 7Wen-Jing Li, Tong Lee. Image registration and obiect recognition by affine invariant matching. In: Proceedings of Intelligent Multimedia, Video and Speech Processing, IEEE Press.2001. 56-59.
  • 8Gümüstekin S, Hall R W. Image registration and mosaicing using a self calibrating camera, In: Proceedings of IEEE Image Processing. IEEE Computer Society, 1998. 818-822.
  • 9Reddy B S, Chatterji B N. An fft-based technique for translation, rotation, and scale invariant image registration.IEEE Transactions on Image Processingo 1996. 5(8): 1266-1271.
  • 10Davis J. Mosaics of scenes with moving objects. In: Proceedings of IEEE Computer Vision and Pattern Recognition,IEEE Computer Society, 1998. 354-360.

同被引文献16

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部