期刊文献+

针对自校准地平面的学习监控跟踪模型(英文) 被引量:1

Learning Surveillance Tracking Models for the Self-Calibrated Ground Plane
下载PDF
导出
摘要 提出了一种新的多摄像机视觉监控系统的信息融合方法 .信息融合在两个阶段进行 .首先 ,根据相互独立的Cartesian参考坐标系统 (设置在地平面上 ) ,对各个摄像机进行标定 .然后 ,把所有的坐标系变换到一个坐标系统中 .在视觉监控应用中 ,因为摄像机自定标和视觉数据配准技术将使监控设施安置变得更加容易 ,从而可以为公共场合发展更加适用的视觉监控工具 .在解决监控数据的不完整性和不确定性方面 。 We propose a novel method for combining information streamed by a multi-sensor system for visual surveillance. Information fusion occurs in two phases during which all cameras are calibrated with respect to independent global Cartesian reference frames (set on the ground plane) and then all frames are registered into a single coordinate system. The development of automatic calibration and registering of visual data is crucial in visual surveillance applications because it makes easier to install the monitoring infrastructure and, consequently, to develop more accessible Visual Surveillance tools for the public domain. Machine learning techniques are believed to offer the best mathematical tools to handle the uncertainty and incomplete nature of surveillance data.
出处 《自动化学报》 EI CSCD 北大核心 2003年第3期381-392,共12页 Acta Automatica Sinica
关键词 多摄像机视觉监控系统 信息融合 数据融合 机器学习 摄像机标定 坐标系变换 Visual surveillance machine learning data fusion camera calibration
  • 相关文献

参考文献11

  • 1Stauffer C, Grimson W E L.Learning patterns of activity using real time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) :747--757.
  • 2Bar--Shaiom Y, Fortmann T.Tracking and data association. In:Mathematics in Science and Engineering. Academic Press. 1988.
  • 3Siebel N T, Maybank S J. Real time tracking of pedestrians and vehicles. In:Proceedings of the 2nd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Hawaii:IEEE Press, 2001.
  • 4Haritaoglu I, Harwood D. Davis L S. W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) :809--830.
  • 5Ellis T, Xu M. Object detection and tracking in an open and dynamic world. In:Proceedings ot the 2nd IEEE Internatinal Warkshop on Performance Evaluation of Tracking and Surveillance, Hawaii:IEEE Press, 2001.
  • 6Fuentes L M, Velastin S A. People tracking in surveillance applications. In: Proceedings of the 2nd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Hawaii:IEEE Press, 2001.
  • 7Cupillard F, Bremond F, Thonnat M. Tracking groups of people for video surveillance. In:Proceedings of the 2nd European on Advanced Videobased Surveillance Systems, UK: Kingston, 2001.88--100.
  • 8Tsai R Y. A versatile camera calibration technique for high- accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 1987,3(4):323--344.
  • 9Haralick R M, Joo H.2D-3D pose estimation. In:Proceedings of the International Conference on Pattern Recognition, 1988. 385--391.
  • 10Balard D H. Brown C M. Computer Vision. New Jersey:Prentice Hall, Inc. , 1982.

同被引文献6

  • 1Dorin C,Peter M.Robust Analysis of Feature Spaces:Color Image Segmentation[C].Proc.of IEEE Conf.on Comp.Vis.and Pattern Recognition,Puerto Rico,1997:750-755.
  • 2Dorin C,Peter M.Mean Shift:A Robust Approach Toward Feature Space Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 3Dorin C,Visvanathan R,Peter M.Real-time Tracking of Non-rigid Objects Using Mean Shift[C].Proc.of IEEE Conf.Computer Vision and Pattern Recognition,2000:142-149.
  • 4Fukunaga K,Hostetler L D.The Estimation of the Gradient of a Density Function,with Applications in Pattern Recognition[J].IEEE Trans.Info.Theory,1975,IT-21(1):32-40.
  • 5张清.视频网络中目标跟踪技术研究[D].西安:西北工业大学,2005.
  • 6郑江滨,张艳宁,冯大淦,赵荣椿.视频监视中运动目标的检测与跟踪算法[J].系统工程与电子技术,2002,24(10):34-37. 被引量:31

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部