摘要
从非线性系统本身的物理背景出发 ,根据系统本身的内在特性、先验知识和经验建立系统辨识模型 ,提出了广义模糊神经网络 (GFNN) .文中证明了GFNN的函数逼近定理 ,并据此提出了GFNN的结构自组织和参数自学习算法 .GFNN在预设的辨识精度下能自动辨识系统的网络结构以及进行参数自学习 ,实现GFNN网络结构的真正在线自组织 .仿真结果表明 ,对于慢时变非线性对象 ,GFNN表现出了很强的非线性逼近能力 。
Based on the intrinsic physical background of nonlinear system, a system identification model is derived from the inherent systematic characteristics, a priori knowledge and experiences. And then, the GFNN (generalized fuzzy neural network) is put forward, the GFNN approximation theorem is proved. The structure-self-organization and parameter-self-learning algorithm is proposed, which can automatically and simultaneously deal with the process of the system structure identification and parameter self-learning under predefined precision, so that the novel on-line structure self-organization of GFNN is realized. Simulation shows the nonlinear approximation abilities of GFNN, especially for identification of slow time-varying plant. The GFNN is a successful integrated algorithm of fuzzy logic and neural network.
出处
《自动化学报》
EI
CSCD
北大核心
2003年第6期867-875,共9页
Acta Automatica Sinica
基金
SupportedbyNational"973"KeyProjectofP .R .China(2 0 0 2CB312 2 0 0 )
关键词
广义模糊神经网络
人工神经网络
自学习算法
函数逼近
非线性系统
Approximation theory
Computer simulation
Fuzzy sets
Identification (control systems)
Learning algorithms
Nonlinear systems
Theorem proving
Time varying systems