期刊文献+

实分片代数曲线的拓扑结构 被引量:2

TOPOLOGY OF PIECEWISE ALGEBRAIC CURVES
原文传递
导出
摘要 1.引言 用有限条不可约代数曲线对平面区域D∈R2进行剖分△,于是D被剖分为有限个子区域δ1,δ2,…,δN,它们称为胞腔.形成每个胞腔边界的线段称为网线,网线的交点称为网点或顶点,同一网线的两个端点称为相邻网点. The piecewise algebraic curve is a kind generalization of the classical algebraic curve. By analyzing the topology of real algebraic curves on the triangles, a practically algrithm for analyzing the topology of piecewise algebraic curves is given. The algrithm produces a planar graph which is topologically equivalent to the piecewise algebraic curve.
出处 《计算数学》 CSCD 北大核心 2003年第4期505-512,共8页 Mathematica Numerica Sinica
基金 国家自然科学基金(批准号:10271022)
关键词 实分片代数曲线 拓扑结构 胞腔 网线 网点 环论 Piecewise Algebraic Curves, Algebraic Curves, Bivariate Splines, Topology
  • 相关文献

参考文献1

  • 1王仁宏.多元齿的结构与插值[J].数学学报,1975,18:91-106.

共引文献13

同被引文献11

  • 1王仁宏,许志强.Estimation of the Bezout number for piecewise algebraic curve[J].Science China Mathematics,2003,46(5):710-717. 被引量:6
  • 2WANGRenhong ZHUChungang.Piecewise algebraic varieties[J].Progress in Natural Science:Materials International,2004,14(7):568-572. 被引量:5
  • 3Zhu, CG,Wang, RH.PIECEWISE SEMIALGEBRAIC SETS[J].Journal of Computational Mathematics,2005,23(5):503-512. 被引量:6
  • 4王仁宏.多元齿的结构与插值[J].数学学报,1975,18:91-106.
  • 5Wang R H. Multivariate Spline Functions and their Applications[M]. Beijing/New York:Science Press/Kluwer Pub,2001.
  • 6Wang R H. Multivariate spline and algebraic geometry[j].Journal of Computational and Applied Mathematics, 2000,121 (1-2):153-163.
  • 7Zhu C G,Wang R H. Real piecewise algebraic curves[J], journal of Information and Computational Science, 2004,1(1):169-173.
  • 8Davydox O, Sommer M, Strauss H. Interpolation by bivariate linear splines[J]. journal of Computational and Applied Mathematics, 2000,119 (1-2) : 115-131.
  • 9Chui C K, He T X,Wang R H. Interpolation by bivariate linear splines[A]. Colloq. Math. Soc.Janos Bolyai ,49[C]. Amsterdam: North-Holland, 1987,247-255.
  • 10Walker R J. Algebraic Curves[M]. Princeton: Princeton University Press. 1950.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部