期刊文献+

调度Agent任务招投标的粗模糊集建模研究 被引量:5

A Rough Fuzzy Set Model for Task Bidding of Scheduling Agent
下载PDF
导出
摘要 通过相识集、招标集、投标集和任务集的概念,描述车间调度控制系统中的调度Agent与资源Agent间任务招投标过程模型;基于任务的属性和资源Agent完成任务的成本、质量、负荷和时间等属性,定义论域上的模糊集,将模糊集中的隶属度函数作为粗集的属性,在模糊集上作截集,获得系统的分类知识;收集样本数据,构造并分析决策表,进而获得调度Agent调度决策知识;应用调度知识进行推理,从参与竞标的若干个资源Agent中,选出最适合招标任务的中标者。该方法建立在规范知识库基础上,有利于Agent知识的管理、再学习和更新,据此建立的系统具有通用性和适应性。 The process model of bidding for tasks be-tween the scheduling agent and the resource agents incontrol system of shop floor is described in terms of ac-quaintance set, invitee set, bidder set and bid--winner atfirst. Some fuzzy sets on the universe are defined basedon the attributes of tasks and the attributes of the cost,quality, load and time for resource agents to accomplishthe tasks. Considering the membership degrees of thefuzzy sets as attributes of rough sets, the knowledge basecan be obtained by making up a series of cutting sets ofthe fuzzy sets. Through a case study, in this paper deci-sion table is discussed, dependency and significance of at-tributes are analyzed and the scheduling decision rules orscheduling knowledge are deduced. The last part of thepaper aims to instruct a method of fuzzy comprehensivejudgment for the selection of a bid--winner.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2003年第22期1943-1946,1977,共5页 China Mechanical Engineering
基金 国家863高技术研究发展计划资助项目(863-511一910-403) 江苏省教育厅自然科学基金资助重点项目(01KJB520010)
关键词 粗集 模糊集 AGENT 任务招投标 rough set fuzzy set agent bidding for tasks
  • 相关文献

同被引文献36

  • 1胡咏梅,贾磊,李歧强.一种基于动态粗集的工件滚动调度识别方法[J].机械工程学报,2005,41(3):67-71. 被引量:12
  • 2陈国新,张剑峰,曾金平,包振强.基于知识树的模具装配图生成技术研究[J].扬州大学学报(自然科学版),2005,8(3):62-66. 被引量:1
  • 3吴秀丽,孙树栋,杨展,翟颖妮.多目标柔性Job Shop调度问题的技术现状和发展趋势[J].计算机应用研究,2007,24(3):1-5. 被引量:19
  • 4Efstathiou J. Anytime Heuristic Schedule Repair in Manufacturing Industry[ J]. IEE Proc. Control Theory Appl. , 1996,143 (2) :114 -124.
  • 5Ishii N, Muraki M. A Process- Variability- Based Online Scheduling System in Muhiproduct Batch Process[ J]. Computer Chem. Eng. ,1996,20(2) :217 -234.
  • 6Shakhlevich N V,Sotskov Y N, Werner F. Adaptive Scheduling Algorithm Based on Mixed Graph Model [ J ].IEE Proc. Control Theory Appl. ,1996,143(1) :9 - 16.
  • 7HORI M, NAKAMARA Y, SATOH, et al. Knowledge-level analysis for eliciting composable scheduling knowledge [ J]. Artificial Intelligence in Engineering, 1995, 9(4): 253-264.
  • 8DUBOIS D, FARGIER H, FORTEMPS P. Fuzzy scheduling: modeling flexible constraints vs. coping with incomplete knowledge [ J ]. European Journal of Operational Research, 2003, 147 (2): 231- 252.
  • 9KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey [ J ]. Journal of Artificial Intelligence Research, 1996, 4(2) :237-285.
  • 10曾黄麟.粗集理论及其应用-关于数据推理的新方法[M].重庆:重庆大学出版社,1998..

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部