期刊文献+

钢管漏磁在线检测技术研究 被引量:4

Study On Steel Pipe Inspection By Magnetic FluxLeakage Methed
下载PDF
导出
摘要 本文首先分析了钢管漏磁在线检测装置的组成,检测信号的采集方法。对采集到的钢管漏磁检测信号采用特征分析和非线性方法对缺陷大小进行定量识别。最后介绍了几个钢管漏磁在线检测在管道腐蚀检测、无缝钢管探伤和石油套管缺陷检测中的应用实例。 The paper analyzes the system of steel pipeinspection by magnetic flux leakage (MFL) method andthe collected method of the signals of steel pipe MFL. Thealgorithm of feature extracting and nonlinear are applied inthe analysis of the signals for MFL and the quantitativerecognition to steel pipe pits. The inspection examples thatare applied in oil-gas pipe inspection, seamless steel tubeinspection and oil steel tube inspection are showed.
出处 《精密制造与自动化》 2003年第B09期114-115,132,共3页 Precise Manufacturing & Automation
基金 天津市重点基金资助项目(993802411)
关键词 钢管 漏磁检测 特征提取 量化技术 信号采集 MFL inspection steel pipe featureextract quantitative recognition
  • 相关文献

参考文献3

二级参考文献7

  • 1[1]Mackintosh David D, Atherton David L et al. Test rigs for magnetic flux leakage inspection tools for pipelines[J]. Materials Evaluation, 1992,50( 1 ): 13-17
  • 2[2]Raad J A de. Comparison between ultrasonic and magnetic flux pigs for pipeline inspection [J]. Pipe & Pipelines International, 1987,32( 1 ) :7-15
  • 3[3]Mandayam S, Upda L, Upda S S et al. Invariance transformations for magnetic flux leakage signals [J]. IEEE Transactions on Magnetics, 1996,32 ( 3 ): 1588-1580.
  • 4[4]Chen T, Chen H. Approximation capability to functions of several variables, nonlinear functional and operators by radial basis function nerual net -works [J]. IEEE Trans on Neural Networks, 1995,6 ( 4 ) :904-910
  • 5[5]Cu P, Yan X. Neural network approach to the reconstruction of free form surface for reverse engineering [J]. Computer -Aided Designing, 1995,27 ( 1 ) :59-64.
  • 6何辅云.钢管高速检测与缺陷识别系统[J].华中理工大学学报,1999,27(12):27-29. 被引量:12
  • 7李训铭,王崇骏,沈琦.Win9x下高速数据采集技术及应用[J].工业控制计算机,2000,13(6):18-21. 被引量:12

共引文献27

同被引文献19

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部