期刊文献+

基于复子波的多子波构造 被引量:3

The multiwavelet construction via complex wavelet
下载PDF
导出
摘要 在实子波分析中,子波函数缺乏对称性,这样大大限制了实子波的应用领域.复子波具有良好的对称性,但对于实信号进行子波分析时,运算过于复杂,且虚部需要截断.文中从复子波出发,分离其虚部与实部构造出新的多子波.构造出的多子波同时具备紧支性、正交性和对称性.同时免预/后滤波,且相应的滤波器系数对称,使得运算复杂度降低. For lack of symmetry in real wavelet analysis, its application is limited. Complex wavlet has good symmetry, but it is too complicated to analyze the real signal and the imaginary part of the processed result is truncated. This paper separates the real part and the imaginary part from the complex wavelet to construct the multiwavelet with good properties, such as short support, orthogonality and symmetry. The multiwavelet via this method does not any pro/post filter, and its symmetry of filter coefficients reduces the computation complication.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2003年第6期780-783,797,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(60133010)
关键词 复子波 多子波 对称性 实子波 波基函数 图像信号处理 complex wavelet multiwavelet construction
  • 相关文献

参考文献2

二级参考文献2

  • 1戴善荣,数据压缩,1989年
  • 2Zou H,IEEEICASSP,1992年,605页

共引文献8

同被引文献35

  • 1李卫斌,张书玲,焦李成.一类新的多子波在图像压缩中的应用[J].咸阳师范学院学报,2004,19(6):1-5. 被引量:1
  • 2崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 3[1]Lawton W., Application of complex-valued wavelet transforms to subband decomposition[J]. IEEE transactions on Signal Processing, 1993, 41 (12):3566-3568.
  • 4[3]Daubechies I., Orthonormal bases of compactly supported wavelets[J]. Communications on pure and applied mathematics, 1988, 41:909-996
  • 5[4]Ben Belzer, etal, Complex, linear-phase filter for efficient image coding[J].IEEE transactions on Signal Processing,1995, 43(10):2425-2427.
  • 6[5]Jefrey S. Geronimo, etal, Fractal functions and wavelet expansions based on severalscaling functions [J]. Journal of approximation theory, 1994, 78(3):373-401.
  • 7[6]Xiang-Gen Xia, A new prefilter design for discrete multiwavelet transforms[J].IEEE transactions on Signal Processing, 1998,46(12):1558-1570.
  • 8[7]Xiang-Gen Xia, etal, Design ofprefilter for discrete multiwavelet transforms [J].EEE transactions on Signal Processing, 1996, 44(1):25-35.
  • 9[8]Xiang-Gen Xia, etal, Vector-valued wavelets and vector filter banks[J]. IEEE transactions on Signal Processing, 1996, 44(3):508-517.
  • 10[9]Jerome Lebrun, etal, Balanced multiwavelet theory and design[J].IEEE transactions on Signal Processing, 1998, 46(4):1119-1125.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部