期刊文献+

关于树的代数连通度的Fiedler不等式的新证明(英文) 被引量:2

A New Proof of Fiedler's Inequality on the Algebraic Connectivity of Trees
下载PDF
导出
摘要 设T为含n个顶点的树,L(T)为其Laplace矩阵.L(T)的次小特征值a(T)称为T的代数连通度.Fiedler给出如下关于a(T)的界的经典结论. a(Pn)≤a(T)≤a(Sn),其中Pn,Sn分别为含有n个顶点的路和星.Merris和Mass独立地证明了:a(T)=a(Sn)当且仅当T=Sn.通过重新组合由Fiedler向量所赋予的顶点的值,本文给出上述不等式的新证明,并证明了:a(T)=a(Pn)当且仅当T=Pn. Let T be a tree on n vertices and let L(T) be the Laplacian matrix of T. The second smallest eigenvalue u(T) of L(T) is called the algebraic connectivity of T. A classical result on the bounds for a(T) is given by Fielder [1] as follows: where Pn and Sn denote respectively the path and the star on n vertices. In [9] and [8], Merris and Mass proved independently that a(T)=a(Sn) if and only if T=Sn In this paper, by recombining the valuation of the vertices which are given by a Fiedler vector (the eigenvector of L(T) corresponding to a(T)), we provide a new proof of above inequality, and also show that a(T) = a(Pn) if and only if T =Pn.
作者 范益政
出处 《数学研究》 CSCD 2003年第4期379-383,共5页 Journal of Mathematical Study
基金 The project item of scientific research support for youth teachers of colleges and universities of Anhui province(2003jq101)
关键词 LAPLACE矩阵 代数连通度 Tree Laplacian matrix algebraic connectivity
  • 相关文献

参考文献11

  • 1[1]Fiedler M. Algebraic connectivity of graphs. Czechoslovak Math. J. 1973, 23:298-305.
  • 2[2]Fiedler M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Math. J. 1975, 25:607-618.
  • 3[3]Li Jiongsheng, Fan Yizheng. Note on the algebraic connectivity of a graph. J. Univ. Sci. Thechnol. China, 2002, 32:1-6.
  • 4[4]Grone R, Merris R. Algebraic connectivity of tree. Czechoslovak Math. J. 1987, 37:660-670.
  • 5[5]Horn R A, Johnson C R. Matrix Analysis. New York: Academic Press, 1985.
  • 6[6]Kirkland S, Fallat S. Perron components and algebraic connectivity for weighted graphs. Linear and Multilinear Algebra, 1998, 44:131-138.
  • 7[7]Kirkland S. A bound on algebraic connectivity of a graph in terms of the number of cutpoints. Linear and Multilinear Algebra, 2000, 47:93-103.
  • 8[8]Mass C. Transportation in graphs and the admittance spectrum. Disc. Appl. Math. 1987, 16:31-49.
  • 9[9]Merris R. Characteristic vertices of trees. Linear and Multilinear Algebra, 1987, 22:115-131.
  • 10[10]Merris R. Laplacian matrices of graphs: a survey. Linear Algebra Appl. 1998, 197/198:143-176.

同被引文献20

  • 1尹书华,束金龙,吴雅容.树的移接变形与代数连通度[J].华东师范大学学报(自然科学版),2005(2):6-15. 被引量:3
  • 2Fiedler M. Algebraic Connectivity of Graphs. J. Czech. Math., 1973, 23:298-305.
  • 3Fiedler M. A Property of Eigenvectors of Nonnegative Symmetric Matrices and its Application toGraph Theory. J. Czech. Math., 1975, 25:619-633.
  • 4Merris R. Characteristic Vertices of Trees. Linear and Multilinear Algebra, 1987, 22:115-131.
  • 5Grone R, Merris R. Algebraic Connectivity of Trees. J. Czech. Math., 1987, 37:660-670.
  • 6Grone R, Merris R. Ordering Trees by Algebraic Connectivity. Graphs and Combinatorics, 1991, 6: 229-237.
  • 7Kirkland S, Neumann M, Shader B. Characteristic Vertices of Weighted Trees via Perron Values. Linear and Multilinear Algebra, 1996, 40:311-325.
  • 8Kirkland S, Neumann M. Algebraic Connectivity of Weighted Trees under Perturbation. Linear and Multilinear Algebra, 1997, 42:187-203.
  • 9Kirkland S, Fallat S. Perron Components and Algebraic Connectivity for Weighted Graphs. Linear and Multilinear Algebra, 1998, 44:131-138.
  • 10Kirkland S, Fallat S. Extremizing Algebraic Connectivity Subject to Graph Theoretic Constraints. Electron. J. Linear Algebra, 1998, 3:8-74.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部