期刊文献+

数据挖掘技术在肝癌术后预测分析中的应用初探 被引量:4

Preliminary application of data mining in postoperative prediction analysis of liver cancer
下载PDF
导出
摘要 目的:考察数据挖掘技术对肝癌患者术后预测的效果。方法:采用数据挖掘技术中的神经网络方法在SAS软件上构建神经网络模型。利用该模型分析我校东方肝胆外科医院1990年1月1日入院至1995年12月31日出院的1457例肝癌患者的临床资料,检测其对肝癌患者术后复发的预测准确率。结果:从56个指标中筛选出有统计学意义的11个指标进入模型,经适当训练后在验证集和测试集上预测准确率均在80%以上。结论:数据挖掘技术可应用于肝癌术后预测分析,效果较为理想。在应用数据挖掘技术时应采用较大样本,同时还应根据资料类型选用适当的方法,反复尝试。 Objective:To examine the effectiveness of data mining in postoperative prediction of liver cancer. Methods: The neural network model was constructed with SAS software by applying the method of neural network. With this model, clinical data of 1 457 patients in Eastern Hepatobiliary Surgery Hospital from Jan. 1,1990 to Dec. 31, 1995 were analyzed to examine the prediction accuracy of data mining neural network for postoperative recurrence of liver cancer. Results: Eleven statistically significant indices were selected from 56 for the model. After appropriate training, the prediction accuracy was above 80% both on validation set and test set. Conclusion:Data mining can be applied in postoperative prediction analysis of liver cancer and the effect is satisfactory. Big samples should be adopted in data mining, and proper method should be chosen according to data type and should be tried repeatedly.
出处 《第二军医大学学报》 CAS CSCD 北大核心 2003年第11期1241-1243,共3页 Academic Journal of Second Military Medical University
基金 国家自然科学基金(39770835)
关键词 数据挖掘技术 肝癌 术后预测 术后复发 预后 data mining neural network prognosis prediction analysis hepatoma postoperative recurrence
  • 相关文献

参考文献6

  • 1贺佳,贺宪民,刘崎,毕文杉,张智坚.BP神经网络预测肝癌患者生存期的研究[J].中国卫生统计,2001,18(1):17-19. 被引量:11
  • 2贺佳,张智坚,贺宪民.肝癌术后无瘤生存期的人工神经网络预测[J].数理统计与管理,2002,21(4):14-16. 被引量:11
  • 3He J,He XM,Zhang ZJ. The method of artificial neural network applied to explore the affecting factors of hepatic cancer recurrence after hepatectomy[J],J Med Colleges PLA , 2002,17(1):65-68.
  • 4Tao TM. A closer look at the radial basis function(RBF) networks I-A3. In : Conference record of the twenty-seventh asilomar conference on signals, systems and computers [M]. Los Alamitos:IEEE Comput Soc Press, 1993. 401-405.
  • 5Fayyad UM, Piatetsky-Shapiro G,Smith P. From data mining to knowledge discovery : an overview [A]. In : Advances in knowledge discovery and data mining[ C ]. Cambridge..AAAT/MIT Press, 1996.1-34.
  • 6Piatetsky-Shapiro G. Data mining and knowledge discovery in business databases [J]. ISMIS, 1996,1079 : 56-67.

二级参考文献10

共引文献20

同被引文献50

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部