摘要
利用类似Plauszynski相应定理的证明方法,研究了一类Marcinkiewicz积分交换子的性质,证明了当b∈Λ·β时,设1<p<∞,0<β<1,1β时,Maricinkiewicz积分交换子Cb(f)的Lq(Rn)到Lp(Rn)的有界性,即当b∈Λ·p-1‖f‖Lp.n,则有‖Cbf(x)
Similar to the method of correponding theorm of Plauszynski, the properties of a class of Marcinkiewicz integral commutator generated by Λ·_β functions are studied, and the boundedness of this class of Marcinkiewicz integral commutator C_bf from L^q(R^n) to L^p(R^n) when b∈Λ·_β is proved, i.e. when b∈Λ·_β, and 1<p<∞, 0<β<1, 1p-1q=βn, then ‖C_bf(x)‖_(L^q)≤C‖b‖_(Λ·_β)‖f‖_(L^p).
出处
《浙江大学学报(理学版)》
CAS
CSCD
2003年第6期606-608,共3页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(No.19631080
No.19971010)
973项目(GrantNo.G1999075105)
浙江省自然科学基金资助项目(GrantNo.RC97017).