期刊文献+

关于半线性热方程整体解的注记 被引量:1

Note on the global solution to the semilinear heat equation
下载PDF
导出
摘要 利用Besov空间的热核刻画及压缩映射原理,研究半线性热方程ut-Δu=u|u|α的初值问题,得到了当初值u0∈Lp0(Rn)且‖u0‖B·p),∞(Rn)(p0=nαp0-12,p>p0)充分小时,整体解的存在性及在一定条件下解的惟一性. By using the heat kernel characterization of Besov spaces and the contraction mapping principle, the initial problem to the semilinear heat equation u_t-Δu=u|u|~α is studied. The global existence of the solution is proved when the initial value u_0 is in L^(p_0)(R^n) and ‖u_0‖_(B·^(-n(1p_0-1p),∞)_p(R^n)) is sufficently small, where p_0=nα2,p>p_0. Under suitable conditions, the uniqueness of the solution is also obtained.
作者 章志飞
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 2003年第6期609-611,共3页 Journal of Zhejiang University(Science Edition)
关键词 半线性热方程 整体解 BESOV空间 惟一性 存在性 semilinear heat equation global solution Besov spaces
  • 相关文献

参考文献7

  • 1WEISSLER F B. Local existence and non existence for semilinear parabolic equation in LP[J]. Indiana Univ Math J, 1980, 29(1):79-102.
  • 2BERGH J, LOFSTROM J. Interpolation spaces, An Introduction [M]. Berlin/New York: Springer-Verlag, 1976.
  • 3TRIEBLE H. Theory of Function Spaces, Monograph in Mathematics[M]. Boston : Birkh auser, 1983.
  • 4CANNONE M. Ondelettes, Paraproduits et Navier-Stokes[M]. Paris: Diderot Editeur, 1995.
  • 5CANNONE M. A generalisation of a theorem by Kato on Navier-Stokes equations I-J3. Revista Matematica Iberoamericana, 19 9 7, 13 (3) : 515 - 5 41.
  • 6PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations [M]. Berlin/'New York: Springer-Verlag, 1983.
  • 7KATO T. Strong Lp solutions of the Navier-Stokes equations in Rm with applications to weak solutions[J]. Math Zeit, 1984, 187(4) :471 -480.

同被引文献4

  • 1KENIG C E,PONCE G,VEGA L.Oscillatory integrals and regularity of dispersive equations[J].Indiana Univ Math,1991,40(1):33-69.
  • 2TZVETKOV N.Remark on the ill-posedness for KdV equation[J].Paris:C R Acad Sci,1999,329 (12):1043-1047.
  • 3MONLINEF L,RIBAUD F.On the low regularity of the Korteweg-de Vries-Burgers equation[J].International Mathematics Reserch Notices,2002,37:1979-2005.
  • 4GINIBRE J,TSUTSUMI Y,VELO G.The local Cauchy problem for the Zakharov system[J].J Funct Analysis,1997,151(2):384-436.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部