摘要
为了进一步补充谱系数理论,使谱技术更好地应用于数字电路故障检测等方面,从基于(0,1)空间的Hadamard矩阵出发,通过对矩阵的性质分析,提出了(0,1)空间的谱系数图与K图的3种图形互换法:基于行矢量圈的图形互换法,基于非零项的图形互换法和基于折叠加减的图形互换法,并对各种方法予以实例说明,此外,还讨论了这些图形转换方法的各自的适用范围.对6变量以下的函数,这3种方法具有简单、直观和准确的特点.
To complement the spectral coefficient theory and apply spectral technology to detecting digital circuit faults, the spectral coefficient map based on the coding of(0,1) space is proposed. By analyzing the features of Hadamard matrix, the paper presents three graphic transformation methods between spectral coefficient map and K-map: graphic transformation method based on line-vector groups, graphic transformation method based on non-zero terms and graphic transformation method based on folded addition and subtraction, and gives some practical examples for each method. Furthermore, the application area for these transformation methods is discussed in the paper. For the function of six variables or less, these methods have the feature of simplicity, intuition and precision.
出处
《浙江大学学报(理学版)》
CAS
CSCD
2003年第6期632-635,共4页
Journal of Zhejiang University(Science Edition)
基金
浙江省科技厅资助项目(001110021).