期刊文献+

RM分解图及其应用 被引量:4

RM type decomposition map and its application
下载PDF
导出
摘要 针对与-异或逻辑代数系统中电路设计与化简的要求,提出了一种全新的图形表示方法——RM分解图,讨论了利用RM分解图将任意开关函数变为RM对称函数等方面的应用.并在此基础上提出了一系列基于RM分解图的图形方法,用来指导超大规模集成电路中基于通用逻辑门的单元电路的设计与化简,设计出的电路具有易于检测、连线数少等优点. A new geometric format, the RM type decomposition map, was proposed, and the method of transforming an arbitrary switching function into a totally RM type symmetric function using RM type decomposition map was discussed. Based on it, a series of graphic methods to guide the design and simplification of cell circuits in VLSI were presented. These circuits designed with RM type ULGs have the advantages of easier testing and fewer connections.
出处 《浙江大学学报(理学版)》 CAS CSCD 2003年第6期636-641,共6页 Journal of Zhejiang University(Science Edition)
基金 浙江省科技厅资助项目(001110021).
关键词 RM分解图 异或逻辑 时称函数 通用逻辑门 超大规模集成电路 Exclusive-OR logic decomposition map RM type decomposition map symmetric function Universal-Logic-Gate VLSI
  • 相关文献

参考文献6

  • 1赵小杰,陈偕雄.将任意开关函数变换为对称函数的新方法[J].杭州大学学报(自然科学版),1990,17(4):401-408. 被引量:4
  • 2WU Xun-wei, CHEN Xie-xiong, HURST SL. Mapping of Reed-Muller coefficients and the minimization of exclusive-OR switching functions [J]. IEE pt E,1982,129(1):15-20.
  • 3ASHENHURST R L. The decomposition of switching functions[J[. Proc Symp on the Theory of Switching,1957,29:74-116.
  • 4CURTIS H A. Design of Switching Circuits [M].Princeton : Van Nostrand, 1962.
  • 5TRAN A, LINT C. Simple disjoint decomposition of Reed-Muller polynomials [J]. Electornics Letters,1994,30(6) :468-469.
  • 6DORMIDO B, CANTO D. Systematic synthesis of combinational circuits using multiplexers [J]. Electornics Letters, 1978,14 (18) : 588- 590.

二级参考文献3

共引文献3

同被引文献18

  • 1马汝星,余党军,陈偕雄.关于自双反函数的性质之研究[J].浙江大学学报(理学版),2004,31(6):638-641. 被引量:16
  • 2陆慧娟,陈偕雄.线性函数的性质及其应用[J].浙江大学学报(理学版),2006,33(2):165-168. 被引量:7
  • 3WU X,CHEN X,HURST S L.Mapping of Reed-Muller coefficients and the minimization of Exclusive-OR swithing functions[J].IEE ptE,1982,129(1):15-20.
  • 4DAHLBERG B.On symmetric functions with redundant variables-weighted functions[J].IEEE Trans Comput,1973,C-22(5):450-458.
  • 5CHENG J,CHEN X,FARAJ K M,et al.Expansion of logical function in the OR-coincidence system and the transform between it and maxterm expansion[J].IEEE Proc Comput Digit Tech,2003,30(3):281-283.
  • 6MUKHOPADHYAY A.Detection of total or partial symmetry of a switching function with the use of decomposition charts[J].IEEE Trans Electron Comput,1963,EC-12:553-557.
  • 7WU X,CHEN X,HURST S L.Mapping of Reed-Muller coefficients and the minimization of Exclusive-OR swithing functions[J].IEE ptE,1982,129(1):15-20.
  • 8CHENG J,CHEN X,FARAJ K M,et al.Expansion of logical function in the OR-coincidence system and the transform between it and maxterm expansion[J].IEEE Proc Comput Digit Tech,2003,30(3):281-283.
  • 9WANG L, ALMAINI A E A. Optimisation of Reed-Muller PLA implementations[J]. IEE Proceedings Circuits, Devices and Systems, 2002,14 9 ( 2 ):119-128.
  • 10WU X, HURST S L. A new universal-logic-gate ULG3 with a Reed-Muller canonic expansion construction[J]. Int J Electronic, 1981,51 (6):747-762.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部