期刊文献+

三维广义有限元及在拱坝计算中的应用 被引量:1

Application of 3-D generalized finite element to arch dam calculation
下载PDF
导出
摘要 基于传统有限元理论,将每个结点位移的Lagrange型插值空间推广为具有任意多个广义位移的函数展开式,在不增加结点个数的前提下,仅通过提高结点插值函数的阶数,达到提高有限元精度的目的,建立了三维广义八结点等参单元的有限元列式,探讨了广义有限元的程序实施细则.通过对悬臂梁、曲梁以及5型拱坝的实例计算,体现了广义有限元法的优越性,为拱坝等结构计算分析提供了一种新途径. Based on the conventional finite element, the Lagrange interpolation space for displacement at each node is extended to an arbitrary function expansion with any number of generalized displacements. Without the increase of the number of nodes, the precision of numerical calculation is improved only by improvement of the order of the interpolation function at each node. In this paper, a 3D finite element numerical form for generalized 8node isoparametric element is developed, and the numerical calculating program of the generalized finite element form is also discussed. The computational examples of a cantilever beam, a curved cantilever beam and a type 5 arch dam indicate the advantages of the generalized finite element method, which provides a new method for structural analysis and calculation for arch dams.
作者 邵国建
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第6期644-648,共5页 Journal of Hohai University(Natural Sciences)
关键词 广义位移 广义形函数 拱坝 广义有限元 插值空间 generalized displacement generalized shape function generalized finite element arch dam
  • 相关文献

参考文献7

  • 1石根华 裴觉民(译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 2栾茂田,田荣,杨庆.广义节点有限元法[J].计算力学学报,2000,17(2):192-200. 被引量:21
  • 3梁国平,何江衡.广义有限元方法──一类新的逼近空间[J].力学进展,1995,25(4):562-565. 被引量:22
  • 4邵国建,刘体锋.广义有限元及其应用[J].河海大学学报(自然科学版),2002,30(4):28-31. 被引量:8
  • 5石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 6MACNEAL R H, HARDER J N. A proposed standard set of problems to test finite element accuracy[J]. Finite Elements Anal Des, 1985(1) :3-20.
  • 7ERGATANDIS J,IRONS B M,ZIENKIEWICY O C. Three-dimensional analysis of arch dams and their foundations[A]. Proc Symb Arch Dams[C]. London: Inst Civil Engng, 1968.37-50.

二级参考文献13

共引文献240

同被引文献18

  • 1彭自强,葛修润.数值流形方法在有限元三维二十结点单元上的实现[J].岩石力学与工程学报,2004,23(15):2622-2627. 被引量:6
  • 2姜清辉,周创兵.四面体有限单元覆盖的三维数值流形方法[J].岩石力学与工程学报,2005,24(24):4455-4460. 被引量:18
  • 3Bubska I, Melenk J M. Partition of unity method [J].International Journal for Numerical Methods inEngineering, 1997, 40: 727-758.
  • 4Melenk J M, Bubska I. The partition of the unity finiteelement method: basic theory and application [J].Computer Methods in Applied Mechanics andEngineering, 1996, 139: 289-314.
  • 5Duarte C A. The hp cloud method [D]. Austin, Texas,USA: Faculty of The Graduate School of the Universityof Texas at Austin, 1996.
  • 6Oden J T, Duarte C A, Zienkiewicz O C. A newcloud-based hp finite element method [J]. ComputerMethods in Applied Mechanics and Engineering, 1998,153: 113-126.
  • 7Strouboulis T, Babuska I, Copps K. The design andanalysis of the generalized finite element method [J].Computer Methods in Applied Mechanics andEngineering, 2000, 181: 43-69.
  • 8Strouboulis T, Copps K, Babuska I. The generalizedfinite element method: an example of itsimplementation and illustration of its performance [J].International Journal for Numerical Methods inEngineering, 2000, 47: 1401-1417. 3.0.CO;2-8 target="_blank">.
  • 9Strouboulis T, Copps K, Babuska I. The generalizedfinite element method [J]. Computer methods in AppliedMechanics and Engineering, 2001, 190: 4081-4193.
  • 10Duarte C A, Babuska I, Oden J T. Generalized finiteelement methods for three-dimensional structuralmechanics problems [J]. Computers & Structures, 2000,77: 215-232.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部