摘要
以函数逼近和Tikhonov正则化为基础,利用算子识别摄动法和线性化技术提出求解一维抛物型偏微分方程参数识别反问题的迭代算法,拓宽了求解此类反问题泛定方程和初边值条件的适用范围。数值模拟的结果表明,用此迭代法求解参数识别反问题具有数值精度高、稳定性好、收敛速度快的特点。
With the function approximation and Tikhonov regularization as the base,this paper presents a new type of iterative algorithm to solve inverse problems of parameter identification for onedimension parabolic partial differential equations.Using operator identification perturbation method and linear technique whereby enlarging the applicable range of partial differential equations and initialboundary values for these inverse problems. The results of numerical simulation illustrate that the iterative algorithm to solve the inverse problems of parameter identification is characterized by high accuracy in numerical values,good stability and fast convergence rate.
出处
《西安理工大学学报》
CAS
2003年第3期245-248,共4页
Journal of Xi'an University of Technology
基金
陕西省自然科学基金资助项目(2001D01)。
关键词
抛物型偏微分方程
参数识别
反问题
迭代算法
数值解法
parabolic partial differential equation
parameter identification
inverse problems
iterative algorithm
numerical solution