期刊文献+

A new iterative algorithm for reconstructing a signal from its dyadic wavelet transform modulus maxima

A new iterative algorithm for reconstructing a signal from its dyadic wavelet transform modulus maxima
原文传递
导出
摘要 A new algorithm for reconstructing a signal from its wavelet transform modulus maxima is presented based on an iterative method for solutions to monotone operator equations in Hilbert spaces. The algorithm's convergence is proved. Numerical simulations for different types of signals are given. The results indicate that compared with Mallat's alternate projection method, the proposed algorithm is simpler, faster and more effective. A new algorithm for reconstructing a signal from its wavelet transform modulus maxima is presented based on an iterative method for solutions to monotone operator equations in Hilbert spaces. The algorithm's convergence is proved. Numerical simulations for different types of signals are given. The results indicate that compared with Mallat's alternate projection method, the proposed algorithm is simpler, faster and more effective.
出处 《Science in China(Series F)》 2003年第6期420-430,共11页 中国科学(F辑英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grant No.60272072) the Natural Science Foundation of Xi'an Jiaotong University(Grant No.2001016).
关键词 dyadic wavelet transform modulus maxima signal reconstruction monotone operator. dyadic wavelet transform, modulus maxima, signal reconstruction, monotone operator.
  • 相关文献

参考文献2

二级参考文献18

  • 1[1]Pati, Y. C., Krishnaprasad, P. S., Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations, IEEE Trans. Neural Networks, 1993, 4(1): 73-85.
  • 2[2]Zhang, Q., Benveniste, A., Wavelet networks, IEEE Trans. Neural Networks, 1992, 3(6): 889-898.
  • 3[3]Bakshi, B. R., Stephanopoulos, G., Wavelet-net: a multiresolution, hierarchical neural network with localized learning, AICHE J., 1993, 39(1): 57-81.
  • 4[4]Szu, H., Telfer B., Kadambe T., Neural network adaptive wavelets for signal representation and classification, Opt. Eng., 1992, 31(9): 1907-1916.
  • 5[5]Zhang, Q., Using wavelet network in nonparametric estimation, IEEE Trans. Neural Networks, 1997, 8(2): 227-236.
  • 6[6]Zhang, J., Walter, G. G., Miao, Y., Wavelet neural networks for function learning, IEEE Trans. Signal Processing, 1995, 43(6): 1485-1497.
  • 7[7]Delyon, B., Juditsky, A., Benveniste, A., Accuracy analysis for wavelet approximations, IEEE Trans. Neural Networks, 1995, 6(2): 332-348.
  • 8[8]Daubechies, I., The wavelet transfrom, time-frequency localization and signal analysis, IEEE Trans. Information Theory, 1990, 36(5): 961-1005.
  • 9[9]Yosida, K., Functional Analysis, New York: Springer-Verlag, 1978.
  • 10[10] Kugarajah, T., Zhang, Q., Multidemensional wavelet frames, IEEE Trans. Neural Networks, 1996, 6(6): 1552-1556.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部