摘要
结合自己的工作 ,对 Gowers- Maurey系列成果获 Fields奖以来的研究的新动态作一综述 .该文是下篇 ,主要讨论与 G- M型空间相关的算子 ,包括可通过 G- M型空间分解的算子 ,G- M型空间上的算子理想与算子构成 ,G- M型空间上的算子谱理论等 .
In this paper, recent developments about a seriesof the Gowers-Maurey′s results since Gowers W. T. had wined the 98'Fields me dal have been introduced. It composes of two sections, in this second section re lative operators have been discussed. They include operators wich factorized thr ough a G M type space, operator idelas and structures of operators on a G-M ty pe space, and the spetral theory of operators on a G-M type space.
出处
《应用泛函分析学报》
CSCD
2003年第3期240-248,共9页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金 (10 1710 14
10 0 710 6 3)