期刊文献+

一种基于小波变换的快速图像编码算法 被引量:2

A Fast Image Encoding Algorithm Based on Wavelet Transform
下载PDF
导出
摘要 在传统的图像小波变换中,首先需要对每行进行小波变换,等所有的行变换完成后再进行列小波变换,然后再进行嵌入式量化和编码,这就需要足够的存储容量保存这些变换结果,而且运算速度也慢。该文提出了一种基于小波变换的快速编码方法。在行变换中,仍然使用传统的提升结构,在列变换中,使用基于因果系统的低存储容量的提升结构。一旦有小波系数输出,就进行相应的量化、编码。该方法不仅压缩效果较好,而且在运算时间上得到大大提高。 In the conventional wavelet transform,all the lines are filte re d before column wavelet transform starts and then embedded quantization and enc oding are re quired.The fast compression method using line-based wavelet trans form is presented.In row transform,we use the conventional lifting scheme ,a nd in column we use low-memory lifting structure with causual system.In ord er to keep the memory needs low,wavelet coefficients are com pressed soon after they have generated.The experimental results demonstrate the coding performanc e is effective,and it offers a significant advantage in terms of speed and me mory needs.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第33期45-46,158,共3页 Computer Engineering and Applications
基金 北京市教育委员会科技发展计划项目(编号:01KJ034)
关键词 第二代小波变换 提升方案 图像编码 second generation wavelet transform,lifting scheme ,ima ge encoding
  • 相关文献

参考文献1

二级参考文献14

  • 1[1]Mallat S G. A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans, Pattern Anal. and Machine Intell., 1989, PAMI-11,674~693
  • 2[2]Coifman R R, Wickenhauser M V. Entropy-based algorithms for best basis selection. IEEE Trans. Infor. Theory, 1992, 38: 713~718
  • 3[3]Lewis A S, Knowles G. Image compression using the 2-D wavelet transform. IEEE Trans. on Image Processing, 1992, 1: 244~250
  • 4[4]Ramchandran K, Vetterli M. Best wavelet packet bases in a rate-distortion sense. IEEE Trans. Image Processing, 1992, 2:160~175
  • 5[5]Autonini M, Rarland M, Mathiou P, Daubechies I. Image coding using wavelet transform. IEEE Trans. on Image Processing, 1992, 1: 205~220
  • 6[6]Shapiro J M. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. on Signal Proc., 1993, 41: 3445~3462
  • 7[7]AlgazV R i, Kato Y, Miyahara M, Kotani K. Compression of image coding techniques with a Picture Quality Scale. Processing of SPIE, Applications of Digital Image Processing XV, 1992, 1771
  • 8[8]Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math., 1988, 41: 909~996
  • 9[9]Daubechies I. Orthonormal bases of compactly supported wavelets II, Variations on a theme. SIAM.J.Math.Anal., 1993, 24: 499~519
  • 10[10]Cohen A, Daubechies I, Feauvean J C. Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math., 1992, 45: 485~500

共引文献2

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部