摘要
在Contact黎曼流形上讨论了关于联络(△~)的截面曲率及相关的几个等价条件,并在此基础上给出了联络(△~)的曲率张量与数量曲率的公式.证明了在Contact黎曼流形(M.η.g)上,Bocher型曲率张量是Gauge变换的不变量当且仅当对应的Contact-Riemanian结构是可积的.
Based on contact riemannian manifolds, proving four equivatent conditions concerning the sectional curvature, and giving the formulas of the curvature tensor and scalar curvature. Bochner curvature tensor of contact riemannian manifold is an invariant of Gauge transformations if and only if the CR-structure Corresponding to(_M.η.g_) is integrable.
出处
《北华大学学报(自然科学版)》
CAS
2003年第6期461-466,共6页
Journal of Beihua University(Natural Science)
关键词
列维-齐维塔联络
切触黎曼流形
切触黎曼结构
强伪凸可积黎曼结构
Levi-Civita connection
Contact riemannian manifolds
Contact riemannian structure
Strongly pseudo-convex integrable CR-structure