摘要
采用确定性混沌理论研究了空气 水两相流压力和压差信号的重构相空间、吸引子不变量的规律。结果表明 ,气液两相流是 1个低维混沌动力学系统 ,各流型间的非线性动力学特性不同。气液两相流的吸引子不变量 ,如Hurst指数、关联维数和Kolmogorov熵等都与流型关系密切。在多数流型内参数波动具有持久性特征 ,首次发现了高气速环状流区的反持久特征。
Both reconstruction of phase space and singularity attractors of pressure and differential pressure signals for gas liquid two phase flow were investigated using determinate chaos theory It shows that the two phase flow is a low dimensional chaos dynamic system The invariant of singularity attractors, such as Hurst exponent, correlation dimension, Kolmogorov entropy, have close relationship with flow regime The two phase flow in bubbly flow, slug flow, churn flow and annular flow with low gas velocity, has positive perduring feature And the reversed perduring processes is first reported in annular flow with great gas velocity
出处
《石油化工设备》
CAS
2003年第6期1-4,共4页
Petro-Chemical Equipment
基金
国家自然科学基金资助项目 (5 0 0 0 6 0 10 )
国家重点基础研究发展纲要 (G19990 2 2 30 8)
关键词
气液两相流
确定性混沌理论
吸引子
重构相空间
two phase flow
determinate chaos theory
strange attractor
reconstruction of phase space