摘要
基于双严格对角占优的概念,针对线性方程组在求解时常用的JOR迭代方法,给出了JOR迭代矩阵谱半径新的上界及迭代法的收敛性准则,不仅适用于严格对角占优矩阵,还适用于双严格对角占优矩阵类,对相应迭代阵谱半径的估计更精确且扩大了JOR方法收敛参数的选取范围,并用数值例子说明了所给结果的优越性。
JOR iterations for solving large linear system are studied. Based on the concept of the doubly diagonal dominance, an new upper bound for the spectral radius and convergence of JOR iterations are presented. Results obtained improve the known corresponding results and are suited to extended matrices. Finally, a numerical example is given for illustrating advantage of results in this paper.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2003年第6期790-792,共3页
Journal of University of Electronic Science and Technology of China
关键词
收敛性
双严格对角占优
JOR迭代法
谱半径
convergence
diagonal strictly dominance
JOR iteration
spectral radius