期刊文献+

广义Z-矩阵及M-矩阵的几个性质 被引量:3

Properties of Generalized Z - Matrices and M - Matrices
下载PDF
导出
摘要 给出了广义线性互补问题中常用到的广义Z-矩阵及M-矩阵的几个性质。这些性质类似于通常意义下的Z-矩阵及M-矩阵的性质。矩阵A∈R^(n×n)为一个Z-矩阵的充分必要条件是对于某矩阵P∈R^(n×n),P≥0,以及某实数a∈R,使得A=aE-P;A∈R^(n×n)为一个M-矩阵当且仅当A同时为Z-矩阵和P-矩阵;若A是一个Z-矩阵,A是一个具有正对角元的对角矩阵,则M=AA仍是一个Z-矩阵。两个Z-矩阵的和是一个Z-矩阵。对于类(m_1,…,m_n)的竖块矩阵N∈R^(m_0×n),先给出了N的代表子阵的定义,然后得到了广义Z-矩阵及M-矩阵与它们类似的几个性质及其几个等价性结论。这为更好的解广义线性互补问题奠定了一定的基础。 Some properties of generalized Z - matrices and M - matrices in generalized linear complementarity problems were studied. These properties are similar to properties of square 2 - matrices and M - matrices. A matrix A ∈ Rn×n is a Z - matrix if and only if there is a matrix P ∈ Rn×n, P ≥0 , and a α 6 R such that A = αE - P ; a matrix A α Rn×n is a M - matrix if and only if matrix A is a Z - matrix and P - matrix ; Let A ∈ Rn×n be a Z - matrix and A is a diagonal matrix, and its diagonal elements are positive, then M = AA is a Z - matrix; The sum of two Z - matrices is a Z - matrix. Let N∈ Rn0×n be a vertical block matrix of type (m1,…, mn), a definition of representative submatrix of N was given, then we propose some properties and theorems of generalized Z - matrices and M - matrices as same as those square Z - matrices and M - matrices. The result laid a foundation for solving generalized linear complementarity problems.
出处 《抚顺石油学院学报》 2003年第4期78-80,共3页 Journal of Fushun Petroleum Institute
关键词 广义Z—矩阵 广义线性互补 竖块矩阵 P—矩阵 Generalized Z - matrices Generalized linear complementarity Vertical block matrix P - matrix
  • 相关文献

参考文献8

  • 1陈景良 陈向晖.特殊矩障[M].北京:清华大学出版社,2001..
  • 2宋岱才,李厚凯.广义P_0-矩阵及P-矩阵的几个性质[J].抚顺石油学院学报,2000,20(1):78-81. 被引量:4
  • 3Cottle R W,Dantzig G B. A generalization of the linear complementarity problem [ J ]. J combin, theory,1970, (8) :79 - 80.
  • 4Mohan S R, Neogy S K, Sridhar R. The generalized linear complementarity problem revisited [J]. Math. Pro. , 1996,749:197 - 218.
  • 5PENG Ji - ming , LIN Zheng - hua. A new method for solving generalized linear complementarity problem [ J]. Mathprogram, 1999, (86) : 533 - 563.
  • 6Kaneko I. Linear complementarity problems and characterizations Minkowski matrices [J ]. Linear algebra appl. ,1978,20:111- 129.
  • 7Mangasarian O L. Generalized linear complementarity problems as linear programs [J]. Oper. res. vefahren ,1979,31:393 -420.
  • 8Tamir A. An application of matrices to a class of resource allocation problems [J]. Mgt, Sci. ,1976 ,23:317 - 323.

二级参考文献2

  • 1S. R. Mohan,S. K. Neogy,R. Sridhar. The generalized linear complementarity problem revisited[J] 1996,Mathematical Programming(2):197~218
  • 2宋岱才,林正华,刘国新.凝聚函数的若干性质[J].吉林大学自然科学学报,2000(2):1-4. 被引量:14

共引文献3

同被引文献12

  • 1程云鹏.矩阵论[M].西安:西北工业大学出版社,1998..
  • 2Cottle R W,Danzig G B. A generalization of the linear complementarity problem[J]. J. combin. theory,1970,(8): 79 - 80.
  • 3Mohan S R,Neogy S K,Sridhar R. The generalized linear complementarity problem revisited[J]. Math. pro. ,1996,749: 197 -218.
  • 4Mangasanam O L. Generalized linear complementarity probleems as linear programs[J].Oper.res.vefahren,1979,31:393-420.
  • 5Cottle R W, Danzig G B. A generalization of the linear complementarity problem[J]. J. combin, theory, 1970, (8) :79 80.
  • 6Mohan S R, Neogy S K, Sridhar R. The generalized linear complementarity problem revisited[J]. Pro. math. , 1996, (749) :197 - 218.
  • 7邱维声.高等代数[M].北京:高等教育出版社,1996..
  • 8PENG Ji-ming, LIN Zheng- hua. A new method for solving generalized linear complementarity problem[J].Math. pro.,1999,86:533 - 563.
  • 9Mohan S R, NeogySK, SridharR. The generalized linear complementarity problem revisited[J]. Math. pro., 1996,749:197-218.
  • 10宋岱才,李厚凯.广义P_0-矩阵及P-矩阵的几个性质[J].抚顺石油学院学报,2000,20(1):78-81. 被引量:4

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部