期刊文献+

关联规则和聚类分析在个性化推荐中的应用 被引量:18

Application of Association Rules and Clustering Analysis to Personalized Recommendation
下载PDF
导出
摘要 提出了两种应用访问页面关联规则和访问模式聚类分析结果相结合进行个性化推荐的方法,即将聚类分析作为关联规则的预处理和将关联规则和聚类分析互补使用,并与单独应用访问页面关联规则或访问模式聚类分析结果进行个性化推荐时的推荐测度进行了比较·实验表明,将聚类分析作为关联规则的预处理的推荐方法可以显著地提高推荐的准确率,而将关联规则和聚类分析互补使用的推荐方法具有较高的推荐覆盖率·同时发现将聚类分析和关联规则结合使用并不能同时改善推荐的准确率和覆盖率· ?Combining the association rules discovered from pageviews with clustering analysis of access patterns, two methods are presented for personalized recommendation. The first is to take the clustering analysis as a pre-processing procedure for association rules discovery, and the second is to have the association rules supplement clustering analysis. Then, a comparison of the measure of recommendation is made between the two methods and using separately the association rules from pageviews or the clustering analysis of access patterns. The result of comparative testing shows that the first method can improve greatly the precision rate of recommendation, whereas the second one has comparatively high coverage rate of recommendation. In addition, it is found that combining the association rules with clustering analysis is unable to improve both the measure precision and coverage rate of recommendation simultaneously.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第12期1149-1152,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60173051)
关键词 WEB使用挖掘 页面关联规则 访问模式聚类 个性化推荐 WEB挖掘 web usage mining pageview association rule access pattern clustering personalized recommendation web mining
  • 相关文献

参考文献10

  • 1Aggarwal C, Yu P. Data mining techniques for personalization[J]. IEEE Data Engineering Bulletin, 2000,23(1):4-9.
  • 2Srivastava J, Cooley R, Deshpande M,et al. Web usage mining: discovery and application of usage patterns from web data[J]. SIGKDD Explorations, 2000,1(2):12-23.
  • 3Lin W, Alvarez S A, Ruiz C. Efficient adaptive-support association rule mining for recommender systems[J]. Data Mining and Knowledge Discovery, 2002,6(1):83-105.
  • 4Mobasher B, Dai H, Luo T,et al. Effective personalization based on association rule discovery from web usage data[A]. Mobasher B ed. 3rd Int Workshop on Web Information and Data Management (WIDM 2001)[C]. New York: ACM Press, 2001.9-15.
  • 5Mobsher B. WebPersonalizer: a server-side recommender system based on web usage mining[EB/OL]. http:∥www.cs.depaul.edu/research/technical.asp, 2001.
  • 6Fu X, Budzik J, Hammond K. Mining navigation history for recommendation[A]. Riecken D ed. Proc Int Conf Intelligent User Interfaces[C]. New York:ACM Press, 2000.106-112.
  • 7Fu Y, Sandhu K, Shih M. A generalization-based approach to clustering of web usage session[A]. Masand B M, Spiliopoulou M eds. Web Usage Analysis and User Profiling, International WEBKDD'99 Workshop[C]. New York:ACM Press, 1999.21-28.
  • 8Mobasher B, Cooley R, Srivastava J. Automatic personalization based on web usage mining[J]. Communications of the ACM, 2000,43(8):142-151.
  • 9Mobasher B, Dai H. Improving the effectiveness of collaborative filtering on anonymous web usage data[A]. Anand S S ed. Proc of the IJCAI2001 Workshop on Intelligent Techniques for Web Personalization (ITWP01)[C]. Berlin:Springer-Verlag, 2001.49-56.
  • 10DePaul CTI web usage data[EB/OL]. http:∥maya.cs.depaul.edu/~classes/ect584/resource.html, 2001.

同被引文献166

引证文献18

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部