摘要
该文通过适当代换并结合假设待定法 ,求出了具高阶非线性项的 Liénard方程 a″(ξ) +la(ξ) +ma2 p+1 (ξ) +na4p+1 (ξ) =0的三类精确解 .据此求出了广义 Ginzburg- Landau方程、Rangwala- Rao方程及若干导数 schrodinger型方程的孤波解和三角函数型周期波解 .
In this paper, the authors first obtain three kinds of explicit exact solution for the liénard equation \$a″(ξ)+la(ξ)+ma\+\{2p+1\}(ξ)+na\+\{4p+1\}(ξ)=0\$ by proper transformation and undetermined assumption method. By means of these solutions, the authors obtain solitary wave solutions and periodic wave solutions of triangle function type for generalized Ginzburg Landau equation and Rangwala Rao equation and several nonlinear derivation Schrdinger type equations.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2003年第6期679-691,共13页
Acta Mathematica Scientia
基金
上海市高等学校科学技术发展基金资助项目