期刊文献+

参数化模型欠、过和完整约束的判定算法 被引量:6

A Decision Method for Under-, Over- and Well-Constrainess of Parametric Model
下载PDF
导出
摘要 在参数化CAD设计中,设计者常常遇到判断一个参数化模型是欠、过和完整约束的问题.针对这个问题,提出了一个判断参数化模型的欠、过和完整约束性的图论算法.该算法不仅能够给出判断,同时还能够对欠和过约束的情形进行定位,即能够给出欠和过约束发生的具体位置.这给设计者在设计过程中提供了很大的方便. In parametric CAD design, the designers often encounter the question of judging whether a parametric model is under-, over- or well-constrained. In this paper, a graph-based algorithm for the question is proposed. This algorithm gives not only the decision of under-, over- or well-constrainess of a parametric model, but also the exact location where under-, over- or well-constraint occurs in the parametric model. This feature provides a more convenient way to the designers in the process of designing.
出处 《软件学报》 EI CSCD 北大核心 2003年第12期2092-2097,共6页 Journal of Software
基金 国家重点基础研究发展规划(973) 数学天元青年基金 中国科学院院长基金~~
关键词 参数化CAD 几何约束求解 偶图 DM分解 最大匹配 parametric CAD geometric constraint solving bigraph DM-decomposition maximum match
  • 相关文献

参考文献10

  • 1[1]Sunde G. Specification of shape by dimension and other geometric constraints. In: Wozny MJ, McLaughlin HW, Encarnacao JL, eds. Geometric Modeling for CAD Applications. Amsterdam, 1988. 199~213.
  • 2[2]Kramer G. Solving Geometric Constraint Systems. New York: MIT Press, 1992.
  • 3[3]Gao XS, Chou SC. Solving geometric constraint systems II: A symbolic approach and decision of Rc-constructibility. Journal of Computer Aided Design, 1998,30(2):115~122.
  • 4[4]Latham RS, Middleditch AE. Connectivity analysis: A tool for processing geometric constraints. Journal of Computer Aided Design, 1996,28(11):917~928.
  • 5[5]Serrano D. Automatic dimensioning in design for manufacturing. In: Rossignac J, Turner J, eds. Proceedings of the Symposium Solid Modelling Foundations and CAD/CAM Applications. New York: ACM Press, 1991. 379~386.
  • 6[6]Owen JC. Algebraic solutions for geometry from dimensional constraints. In: Rossignac J, Turner J, eds. Proceedings of the Symposium Solid Modelling Foundations and CAD/CAM Applications. New York: ACM Press, 1991. 397~407.
  • 7[7]Peng XB, Chen LP, Zhou FL, Zhou J. Singularity analysis of geometric constraint system. Journal of Computer Science and Technology, 2002,17(3):314~323.
  • 8[8]Bouma W, Fudos I, Hoffmann C, Cai J, Paige R. A geometric constraint solver. Journal of Computer Aided Design, 1995, 27(6):487~501.
  • 9[9]Kazuo Murota. Algorithms and Combinatorics 3: Systems Analysis by Graphs and Matroids, Structural Solvability and Controllability. Berlin: Springer-Verlag, 1987.
  • 10[10]http://www.mmrc.iss.ac.cn/~mmsoft. 2002.

同被引文献34

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部