期刊文献+

基于SWAT模型的中尺度流域产流产沙模拟研究 被引量:67

Runoff and Sediment Yield Modeling in Meso-scale Watershed Based on SWAT Model
下载PDF
导出
摘要 以黄河下游小花间(小浪底-花园口)区域洛河卢氏水文站以上流域为研究区,在GIS技术支持下,应用分布式模型SWAT(SoilandWaterAssessmentTool)进行了流域产流产沙模拟。采用卢氏水文站1992~1997连续6年的实测月均径流和泥沙数据对模型进行了校准:在模型校准过程采用自动数字滤波技术将径流总量划分为直接径流和基流,并分别对直接径流和基流进行了校准,以达到径流总量的拟合,在此基础上对流域泥沙负荷进行了校准;采用1998~1999连续2年的实测月均径流和泥沙数据对模型的适用性进行了验证。采用相对误差(RE)、决定系数(R2)以及Nash-Suttcliffe效率系数(Ens)作为模型适用性的评价系数,结果表明SWAT模型在研究区对流域长期连续径流和泥沙负荷模拟具有较好的适用性,具有一定的推广意义。 The upper watershed of Luo River which is located in the Xiaohua District (XiaolangdiHuayuankou) was selected as the study area to validate distributed SWAT (Soil and Water Assessment Tool) model with the support of GIS technology. Monthly runoff and sediment yield data from 1992 to 1997 were used to calibrate SWAT. In the process of calibration automated digital filter technique was used to partition direct runoff and base flow. The direct runoff was firstly calibrated, then the base flow, and the total runoff were matched. At last the sediment yield was calibrated to match well. After calibration, monthly runoff volume and sediment yield data from 1998 to 1999 were used to validate SWAT model. Relative Error (RE), Determination Coefficient (R2) and NashSuttcliffe Efficiency (Ens) were used to evaluate the applicability of SWAT model, the results show that SWAT model could be successfully used to model longterm continuous runoff and sediment yield in the mesoscale watershed in the Yellow River Basin.
出处 《水土保持研究》 CSCD 2003年第4期38-42,共5页 Research of Soil and Water Conservation
基金 国家重点基础研究发展规划资助项目(G1999043605) 教育部博士点基金资助项目(20010027013)。
关键词 SWAT 中尺度流域 黄河 径流 泥沙 SWAT meso-scale watershed the Yellow River runoff sediment
  • 相关文献

参考文献18

  • 1牛志明,解明曙,孙阁,McNulty S G.ANSWER2000在小流域土壤侵蚀过程模拟中的应用研究[J].水土保持学报,2001,15(3):56-60. 被引量:32
  • 2刘高焕,蔡强国,朱会义,唐政红.基于地块汇流网络的小流域水沙运移模拟方法研究[J].地理科学进展,2003,22(1):71-78. 被引量:4
  • 3卫海燕,张科利,王敬义.分布式侵蚀预报模型中网格面积的选定——以黄土高原丘陵沟壑区为例[J].地理研究,2002,21(5):578-584. 被引量:6
  • 4王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86. 被引量:372
  • 5Wood, E F, Sivapalan, M, Beven, K, et al. Effects of spatial variability and scale with implications to hydrologic modeling[J]. Journal of Hydrology, 1988,102 : 29- 47.
  • 6Arnold, J G, R Srinivasan, R S Muttiah, et al. Large area hydrologic modeling and assessment, Part I: model development [J]. Journal of the American Water Resources Association, 1988,34 (1) : 73- 89.
  • 7Neitsch, S L, J G Arnold, et al. Soil and Water Assessment Tool Theoretical Documentation[EB/OL]. Temple,Texas, Grassland, Soil and Water Research Laboratory, Agricultural Research Service. 2001, http://www. brc.tamus. edu/swat/swat2000doc. html.
  • 8Arnold, J G, R Srinivasan, R S Muttiah, et al. Continental scale simulation of the hydrologic balance[J]. Journal of American Water Resources Association, 1999,35(5) : 1037-1051.
  • 9Douglas, D H. Experiments to Locate Ridges and Channels to Create a New Type of Digital Elevation Models[J].Cartographica, 1986,23 (4) : 29 - 61.
  • 10Fairfield, J, P Leymarie. Drainage Networks from Grid Digital Elevation Models[J]. Water Resources Research,1991,30(6) :1681-1692.

二级参考文献20

  • 1[7]Leonard R A, Knisel W G, et al. GLEAMS: Groundwater loading effects of agriculture management systems[J]. Trans.of the ASAE, 1987, 30(5): 1403-1418.
  • 2[8]Abbott M B, Bathurst J C, et al. An introduction to the Euro pean Hydrological System-System Hydrologique European, "SHE”, 2: structure of a physically-based, distributed modelling system[J]. Journal of Hydrology, 198 6,87:61-77.
  • 3[9]Bouraoui F. Development of a continuous, physically-based, distri buted parameter, nonpoint source model[D].Biological Systems En g ineering Dept., Virginia Polytechnic Institute and State University, Blacksburg ,VA.1994.
  • 4[10]Dillaha T A,Beasley D B. Distributed parameter modeling of sediment movement and particle size distributions[J]. Trans. of the ASAE, 1983, 26(6):1766-1772.
  • 5[1]Wischmeier W H,Smith D D. Predicting rainfall erosion loss es[M]. U.S. Dept. of Agriculture, Agricultural Handbook No.537. 1978.30-66.
  • 6[2]Renard K G, Foster G R, et al. Predicting soil erosion by w ater: A guide to conservation planning with the Revised Universal Soil Loss Equa tion (RUSLE)[M]. U.S. Department of Agriculture, Agriculture Handbook No.537 .1998.404.
  • 7[3]Novotny V. A review of hydrologic and water quality models used for simulation of agricultural pollution[A]. In: Giorgini A, Zingales F (e d.). Agricultural Nonpoint Source Pollution: Model selection and application[ M]. Elsevier Science Publishing Company, INC., New York, NY.1986.
  • 8[4]Young R A, Onstad C A, et al. AGNPS: A nonpoint-source polluti on model for evaluating agricultural watersheds[J]. Journal of Soil and Water Conservation,1989, 44(2): 168-173.
  • 9[5]Lane L J, Renard K G, et al. Development and application mo dern soil erosion prediction technology-The USDA experience[J]. Aust. J. Soil Resources,1992, 30:893-912.
  • 10[6]Beasley D B, Huggins L F, et al. Modeling sediment yield fro m agricultural watersheds[J].Journal of Soil and Water Conservation,1982, 3 7(2):113-117.

共引文献408

同被引文献967

引证文献67

二级引证文献838

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部