期刊文献+

Ultrastructural and G-6-Pase Cytochemical Studies of Injurious Action of Cadmium and Protection of Zinc on Rat Leydig Cells 被引量:4

Ultrastructural and G-6-Pase Cytochemical Studies of Injurious Action of Cadmium and Protection of Zinc on Rat Leydig Cells
下载PDF
导出
摘要 Objective To investigate ultrastructural effects of cadmium(Cd) and zinc(Zn) on rat Leydig cells (LCs) and the possible mechanisms of Cd induced injury. Methods The Wistar rats were injected with low dose cadmium chloride (CdCl 2, 2 mg/kg body weight).The specimens obtained from 1 h to 60 d after dosing were studied by using transmission electron microscope (TEM) combined with a quantitative analysis of glucose 6 phosphatase(G 6 Pase) cytochemistry. Meanwhile, the protective effects of Zn on Cd induced injury were observed. Results The ultrastructural changes of LCs were detected at 4 h after Cd treatment and became more serious after 24 h. The main alterations were dilatation of smooth endoplasmic reticulum (SER), increasing of lipid droplets and myelin figures as well as appearing of vacuoles in the endothelial cell of lymphatic and blood capillaries. At 3,7 and 15 d, the degeneration above mentioned was most prominent, numerous necrotic LCs and flocculent densities in mitochondria were observed. After 30 d, the injuries of LCs appeared to be alleviated. But most of LCs still not recovered to normal after 60 d. However, the G 6 Pase reaction products was found to be reduced at 1 h after Cd treatment, and such decrease was most pronounced within 3~15 d. After 30 d, there was an obviously recovery of the G 6 Pase reaction product. The injuries of LCs of Zn protected groups were gentle and the G 6 Pase reaction products were more than that of Cd treated groups at the same time. Conclusions The early injuries of LCs were related to the direct action of Cd; the effects of Cd on the G 6 Pase activities occured earlier than the morphological alterations; the damage of lymphatic and blood capillaries as well as interstitial fibrosis might accelerate the degeneration and Zn could protect obviously LCs from damage by Cd. Objective To investigate ultrastructural effects of cadmium(Cd) and zinc(Zn) on rat Leydig cells (LCs) and the possible mechanisms of Cd induced injury. Methods The Wistar rats were injected with low dose cadmium chloride (CdCl 2, 2 mg/kg body weight).The specimens obtained from 1 h to 60 d after dosing were studied by using transmission electron microscope (TEM) combined with a quantitative analysis of glucose 6 phosphatase(G 6 Pase) cytochemistry. Meanwhile, the protective effects of Zn on Cd induced injury were observed. Results The ultrastructural changes of LCs were detected at 4 h after Cd treatment and became more serious after 24 h. The main alterations were dilatation of smooth endoplasmic reticulum (SER), increasing of lipid droplets and myelin figures as well as appearing of vacuoles in the endothelial cell of lymphatic and blood capillaries. At 3,7 and 15 d, the degeneration above mentioned was most prominent, numerous necrotic LCs and flocculent densities in mitochondria were observed. After 30 d, the injuries of LCs appeared to be alleviated. But most of LCs still not recovered to normal after 60 d. However, the G 6 Pase reaction products was found to be reduced at 1 h after Cd treatment, and such decrease was most pronounced within 3~15 d. After 30 d, there was an obviously recovery of the G 6 Pase reaction product. The injuries of LCs of Zn protected groups were gentle and the G 6 Pase reaction products were more than that of Cd treated groups at the same time. Conclusions The early injuries of LCs were related to the direct action of Cd; the effects of Cd on the G 6 Pase activities occured earlier than the morphological alterations; the damage of lymphatic and blood capillaries as well as interstitial fibrosis might accelerate the degeneration and Zn could protect obviously LCs from damage by Cd.
出处 《Journal of Reproduction and Contraception》 CAS 1999年第4期203-213,共11页 生殖与避孕(英文版)
关键词 CADMIUM ZINC Leydig cell ULTRASTRUCTURE Glucose 6 phosphatase Cadmium, Zinc, Leydig cell, Ultrastructure, Glucose 6 phosphatase
  • 相关文献

同被引文献12

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部