摘要
提出了一种线性条带挖掘方法LMSCMO。方法可分为两个主要部分 :首先 ,利用作者提出的基于数学形态学尺度空间的聚类算法MSCMO寻找到最合适的图像重分割尺度 ;其次 ,对此尺度下的分割结果进一步分割得到线性条带。LMSCMO是一种对“非纯粹直线”与噪声具鲁棒性的线性条带提取方法。
One spatial data mining method LMSCMO for linear belts extracting is proposed. LMSCMO can be divided into two basic steps: firstly, the most suitable re segmenting scale is found by our clustering algorithm MSCMO which is based on mathematical morphological scale space; secondly, the segmented result at this scale is re segmented to obtain the final linear belts. The authors declare that LMSCMO is a robust mining method to semi linear clusters and noises, which is validated by the successful extraction of seismic belts.
出处
《高技术通讯》
EI
CAS
CSCD
2003年第10期20-24,共5页
Chinese High Technology Letters
基金
86 3计划 (2 0 0 2AA135 2 30 )
国家自然科学基金 (4 0 10 10 2 1)
中国科学院知识创新工程 (CX10G D0 0 0 6
KZCX1 Y 0 2 )资助项目
关键词
数学形态学
聚类算法
线性条带挖掘
鲁棒性
地震带
尺度空间
Mathematical morphology, Scale space, Clustering, Spatial data mining, Linear belt, Seismic belt