期刊文献+

一种基于数学形态学尺度空间的线性条带挖掘方法 被引量:2

A Mathematical Morphological Scale Space Based Method for Linear Belts Extracting
下载PDF
导出
摘要 提出了一种线性条带挖掘方法LMSCMO。方法可分为两个主要部分 :首先 ,利用作者提出的基于数学形态学尺度空间的聚类算法MSCMO寻找到最合适的图像重分割尺度 ;其次 ,对此尺度下的分割结果进一步分割得到线性条带。LMSCMO是一种对“非纯粹直线”与噪声具鲁棒性的线性条带提取方法。 One spatial data mining method LMSCMO for linear belts extracting is proposed. LMSCMO can be divided into two basic steps: firstly, the most suitable re segmenting scale is found by our clustering algorithm MSCMO which is based on mathematical morphological scale space; secondly, the segmented result at this scale is re segmented to obtain the final linear belts. The authors declare that LMSCMO is a robust mining method to semi linear clusters and noises, which is validated by the successful extraction of seismic belts.
出处 《高技术通讯》 EI CAS CSCD 2003年第10期20-24,共5页 Chinese High Technology Letters
基金 86 3计划 (2 0 0 2AA135 2 30 ) 国家自然科学基金 (4 0 10 10 2 1) 中国科学院知识创新工程 (CX10G D0 0 0 6 KZCX1 Y 0 2 )资助项目
关键词 数学形态学 聚类算法 线性条带挖掘 鲁棒性 地震带 尺度空间 Mathematical morphology, Scale space, Clustering, Spatial data mining, Linear belt, Seismic belt
  • 相关文献

参考文献1

二级参考文献9

  • 1Frawley W. Piatesky-Shapiro G, Matheus C, Knowledge Discovery in Databases: An Overview,In Piatesky-Shapiro G. and Frawley W (Ed.), Knowledge Discovery in Databases, AAAI/MIT Press.
  • 2Platesky-Shapiro G.An Overview of Knowledge Discovery in Databases: Recent Progress and Challenges, In W. P. Ziarko(Ed.), Rough Sets, Puzzy Sets and Knowledge Discovery,Springer Verlag, 1994.
  • 3Han J. Data Mining Techniques. ACM-SIGMOD'96 Conf. Tutorial, June, 1996.
  • 4Koperski K. Adhihary J. Han J.Spatial Data Mining Progress and Challenges. SIGMOD'96 Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'96),Montreal, Canada, June, 1996.
  • 5邸凯昌,李德仁.KDD技术及其在GIS中的应用与扩展.中国GIS协会第二届年会,北京,1996.
  • 6邸凯昌,李德仁,李德毅.空间数据发掘和知识发现的框架.第十届全国遥感技术学术交流会,青岛.1997.
  • 7Ester M.et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proc. 2nd Int.Conf.on Knowledge Discovery and Data Mining, Portland,USA, 1996.
  • 8Ng R T.Han J. Efficient and Effective Clustering Methods for Spatial Data Mining, Proc. of the 20th VLDB Conf. Santiago.Chile, 1994.
  • 9Ester M. et al.A Database Interface for Clustering in Large Spatial Databases, Proc.1st Int. Conf. on Knowledge Discovery and Data Mining. Montreal, Canada, 1995.

共引文献9

同被引文献27

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部