期刊文献+

一种基于后项不定长关联规则的Web个性化推荐方法 被引量:1

A Web Personalized Recommendation Method Based on Uncertain Consequent Association Rules
下载PDF
导出
摘要 1引言 随着Internet的发展,电子商务、远程教育等各种基于网络的服务也得到迅猛发展.实现网上信息个性化已经成为一种热点. Web usage mining plays an important part in supporting personalized recommendation on Web and association rule uncovers the interesting relations among items hidden in data. The paper gives an idea of association rule merging-deleting based on the analysis of association rule characteristics and implements it in the rule preparation before the Web personalized recommendation. Furthermore, based on the comparisons in precision, coverage and F1 of recommendation system and the rule numbers used in three kinds of association rules, a Web personalized recommendation method based on uncertain consequent is put forward. After integrative analysis of several recommendation methods, the method given in the paper can be thought as a good selection. At last several page-weighted techniques are introduced in the paper.
出处 《计算机科学》 CSCD 北大核心 2003年第12期69-72,88,共5页 Computer Science
基金 国家自然科学基金(No.60173051)
关键词 INTERNET WEB 个性化推荐方法 后项不定长关联规则 Association rule, Web usage mining, Personalized recommendation, Precision, Coverage
  • 相关文献

参考文献14

  • 1[1]Cooler R,Mobasher B,Srivastav J. Web Mining: Information and Pattern Discovery on the World Wide Web. (ICTAI1997)
  • 2[2]Srivastava J,Cooley R,Deshpande M ,Tan P. Web Usage Mining:Discovery and Application of Usage Patterns from Web Data.ACM SIGKDD, Jan. 2000
  • 3[3]Mobaaher B,Dai H,Luo T, et al. Discovery of aggregate usage profiles for Web personalization. In: Proc. of the WebKDD 2000Workshop at the ACM SIGKDD2000, boston,Aug. 2000
  • 4[4]Mobasher B. Mining Web Usage Data for Automatic Site Personalization. To appear in Gaul, W. , & Ritter, G. (Eds. ),Classification , Automation, and New Media, Springer. 2001
  • 5[5]Mobasher B,Dai H,Luo T, et al. Improving the Effectiveness of Collaborative Filtering on Anonymous Web Usage Data. In:Proc.of The IJCAI 2001 Workshop on Intelligent Techniques for Web Personalization (ITWP01 )
  • 6[6]Gaul W, Schmidt-Thieme L. Recommender Systems Based on Navigation Path Features. In: Proc. of the WEBKDD 2001Workshop on Mining Web Log Data Across All Customer Touch Points. The Seventh ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining ,San Franscisco,CA,2001
  • 7[7]Mobasher B. WebPersonalizer: A Server-Side Recommender System Based on Web Usage Mining: [Technical Report TR99-110]. Department of Computer Science, Depaul University
  • 8[8]Mobasher B,Dai H,Luo T,et al. Effective Personalization Based on Association Rule Discover from Web Usage Data. In:Proc. of The 3rd ACM Workshop on Web Information and Data Management
  • 9[9]Fu X, Budzik J, Hammond K. Mining navigation history for recommendation. In: Proc. 2000 int. conf. intelligent user interfaces, New Orleans, LA, ACM, Jan. 2000. 106 ~ 112
  • 10[10]Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. Int. Conf. Very Large DataBase, 487-499,Santiago, Chile

同被引文献26

引证文献1

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部