期刊文献+

多机器人对未知环境进行实时在线探测的一种方法 被引量:4

A Real-time On-line Method for Exploring Unknown Environment with Multiple Robots
下载PDF
导出
摘要 将多机器人协作引入了构建地图的作业任务研究中,将多个范围传感器所探测到的环境信息以概率值的方式表示,利用不确定性证据推理的原理对其进行了Dempster-shafer数据融合。在协作的基础上,设计了避障策略。系统仿真实验,验证了该方法的可行性。 In this paper multi-robot system is introduced in map-building task. The environment information from multiple range sensors is represented in the form of probability, and is fused using evidential reasoning with uncertainty based on Dempster-Shafer theory. Strategy to avoid obstacles is designed based on cooperation, and simulation experiments proved the plausibility of the method.
出处 《高技术通讯》 EI CAS CSCD 2003年第11期56-60,共5页 Chinese High Technology Letters
基金 863计划(863-512-9935-02) 国家自然科学基金(69975022)资助项目
关键词 地图构建 传感器 多机器人系统 预测性轨迹过滤法 信息融合算法 Multi-robot system, Map-building, Cooperation
  • 相关文献

参考文献7

  • 1[1]Cao Y U, Fukunaga A S, et al. Autonomous Robots,1997, 4(1):7
  • 2[2]Cai A, Fukuda T, et al. Integration of distributed sensing information in DARS based on evidential reasoning. In:Proc of the 3rd International Symposium on Distributed Autonomous Robotic Systems, 1996. 268
  • 3[3]Pagac D, Nebot E M. An evidential appoach to probabilistic map-building. In: Dorst L, ed. Reasoning with Uncertainty in Robotics. Springer-Verlag, 1995. 164
  • 4[4]Feder H J S, Leonard J J, et al. The International Journal of Robotics Research, 1999, 11(7): 650
  • 5[5]Burgard W, Moors M, et al. Collaborative multi-robot exploration. In: IEEE International Conference on Robotics and Automation( ICRA), 2000.7
  • 6[6]Thrun S, Beetz M, et al. The International Journal of Robotics Research ,2000, 19(11) :972
  • 7[7]Thun S, Burgard W, et al. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of IEEE International Conference on Robotics and Automation(ICRA), 2000.1

同被引文献22

  • 1辛欣,游雄,卫伟,张君儒.基于便携式移动终端的虚拟地理环境协同感知问题研究[J].测绘工程,2010,19(5):24-28. 被引量:1
  • 2Moravec H, Elfes A E. High resolution maps from wide angle sonar[C]//Proc of IEEE Int Conf Robotics and Automation. Missouri: IEEE Computer Society, 1985: 116-121.
  • 3Ofir C, Yael E. Adaptive fuzzy logic algorithm for grid-map based sensor fusion[C] // Proc IEEE Intell Vehicles Symposium. Parma: Institute of Electrical and Electronics Engineers Inc, 2004: 625-630.
  • 4Smarandache F, Dezert J. Advances and applications of DSmT for information fusion [M]. Rehoboth: American Research Press, 2004.
  • 5Li X, Huang X, Dezert J, et al. A successful application of DSmT in sonar grid map building and comparison with DST-based approach[J]. International Journal of Innovative Computing, Information and Control, 2007, 3(3):539-551.
  • 6Smarandache F, Dezert J. Advances and applications of DSmT for information fusion[M]. Rehoboth: American Research Press, 2006.
  • 7Li X, Huang X, Dezert J, et al. DSmT-based generalized fusion machine for information fusion in robot map building[C] // Proc of Int Colloq on Information Fusion. Xi' an: Xi' an Jiaotong University Press, 2007: 63-70.
  • 8Dempster A P. Upper and lower probabilities in- duced by a multi-valued mapping[J]. Annals of Mathematical Statistics, 1967, 38(4) :325-339.
  • 9Shafer G. A Mathematica! Theory of gvidence[M]. Princeton= Princeton University Press, 1976: 19-63.
  • 10Pagac D, Nebot E M, Durrant-Whyte H. An evi- dential approach to probabilistic map building[C]//Proceedings of the 1996 IEEE International Confer- ence on Robotics and Automation, Geiranger Nor-way : IEEE Press, 1996:745-750.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部