Periodic Solution of Weakly Damped 3D Schrodinger-Boussinesq Equations
摘要
In this paper the authors consider a model of the interaction of a nonlinear complex Schrodinger field and a real Boussinesq field in a 3D domain with the weakly damping which arises in the laser and plasma physics and prove the existence of the periodic solution.
参考文献16
-
1MAKHANKOV V G. On stationarysolutions of Schrǒdinger equations with a self-consistent potential satisfying Boussinesqequations[J]. Phys Lett,1974,50A:42-44.
-
2NISHIKAWA K,HIJO H,MIMA K,IKEZI H. Coupled nonlinear electron-plasma andion-acoustic waves[J]. Phys lett,1974,33:148-150.
-
3ZAKHAROW V E,SHABAT A B. Integrable system of nonlinear equations in mathematicalphysics[J].Funct Annal Appl,1974,8(3):43-53.
-
4MAKHANKOV V G. Dynamics of Classical Solitions(In Nonintegrable Systems)[R].Physics Reports,A Review Section of Physics Letters,1978,35C(1):1-128.
-
5GUO Bo-ling. The global solution of the system of equations for the complex Schrǒdingerfield coupled with Boussinesq type self-consistent field[J]. Acta MathSinica,1983,26:297-306.
-
6GUO Bo-ling. Initial boundary value problems for one class of system ofmultidimensional nonlinear Schr(o)dinger-Boussinesq type equations[J]. J Math ResExposition,1988,8(1):61-71.
-
7GUO Bo-ling. The global solution of the initial value problem for the nonlinearSchrǒdinger-Boussinesq equation in 3-dimension[J]. Acta Math Sinica,1990,6:223-233.
-
8GUO Bo-ling,CHEN Feng-xin. Finite dimensional behavior of global attractors forweakly damped nonlinear Schrǒdinger-Boussinesq equation[J]. PhysicaD,1996,93(1-2):101-118.
-
9GUO Bo-ling,HAN Yong-qian. Cauchy problem of nonlinear Schrǒdinger-Boussinesqequation in L2 and H1[C]. In:Proceedings of the conference on nonlinear evolutionequations and infinite-dimensional dynamical systems,Shanghai,China,1995. Singapore:WorldScientific,1997:66-72.
-
10GUO Bo-ling,SHEN Long-jun. The global solution for the initial boundary valueproblem of the system of Schr(o)dinger-Boussinesq type equations in three dimensions[J].Acta Math Appl Sinica,1990,6(1):11-21.
-
1YANG Xinguang,ZHANG Lingrui.BKM's Criterion of Weak Solutions for the 3D Boussinesq Equations[J].Journal of Partial Differential Equations,2014,27(1):64-73. 被引量:1
-
2李伟.Boussinesq equations的新的精确解[J].重庆理工大学学报(自然科学),2015,29(6):151-154. 被引量:1
-
3张春义,李娟,孟祥花,许韬,高以天.Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg-de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation[J].Chinese Physics Letters,2008,25(3):878-880. 被引量:2
-
4房少梅,金玲玉,郭柏灵.Global existence of solutions to the periodic initial value problems for two-dimensional Newton-Boussinesq equations[J].Applied Mathematics and Mechanics(English Edition),2010,31(4):405-414.
-
5Ying Liu.Upper Bounds of the Rates of Decay for Solutions of the Boussinesq Equations[J].Acta Mathematicae Applicatae Sinica,2011,27(1):105-114.
-
6郭柏灵.SPECTRAL METHOD FOR SOLVING TWODIMENSIONAL NEWTON-BOUSSINESQ EQUATIONS[J].Acta Mathematicae Applicatae Sinica,1989,5(3):208-218. 被引量:13
-
7Xiao-jing CAI,Chun-yan XUE,Xian-jin LI,Ying LIU,Quan-sen JIU.Some Remarks on Planar Boussinesq Equations[J].Acta Mathematicae Applicatae Sinica,2012,28(3):525-534.
-
8Guo Boling Yuan Guangwei Guo Boling Yuan Guangwei Institute of Applied Physics and Computational Mathematics Beijing,100088 China.On the Suitable Weak Solutions to the Boussinesq Equations in a Bounded Domain[J].Acta Mathematica Sinica,English Series,1996,12(2):205-216. 被引量:2
-
9袁玉波,溥冬梅,李庶民.BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS IN VARIANT BOUSSINESQ EQUATIONS[J].Applied Mathematics and Mechanics(English Edition),2006,27(6):811-822.
-
10高宏.Study of Heat Transport Across a Quasi-Stochastic Magnetic Field in Magnetic Confined Plasma Physics[J].Plasma Science and Technology,2009,11(6):657-660.