摘要
使用准各向同性的空间差分格式替代常规ADI-FDTD算法中的差分形式来改善原算法中的数值色散问题。修正后的算法依然保持了无条件稳定的优势;同时,通过合理选择加权系数,仿真过程中的数值色散误差可以显著降低。推导出了修正算法的数值色散关系,并从入射角、时间步长和网格尺寸等3个方面分析了修正算法数值色散问题的改进程度。最后,通过一个算例对比演示了改进算法的精度和计算效率。
The difference scheme of the alternating-direction-implicit finite-difference time-domain(ADI-FDTD) method is replaced by the quasi isotropic(QI) spatial difference scheme to improve its numerical dispersion characteristics. The unconditional stability advantage of QI-ADI-FDTD is analytically proven and numerically verified. The numerical dispersion of the novel method can be dramatically reduced by choosing proper weighting factor. An example is simulated to demonstrate the accuracy and efficiency of the proposed method.
出处
《微波学报》
CSCD
北大核心
2017年第S1期14-21,共8页
Journal of Microwaves
基金
国家自然科学基金(60671057)
关键词
ADI-FDTD
数字色散
准各向同性空间差分法
无条件稳定
加权系数
alternating direction implicit(ADI)
finite-difference time-domain(FDTD)
numerical dispersion
quasi isotropic spatial difference scheme
unconditionally stable
weighting factor