期刊文献+

影像组学在泌尿系统肿瘤中的研究进展 被引量:5

Radiomics research in urologic neoplasms
下载PDF
导出
摘要 泌尿系肿瘤发病率正逐年上升,影像组学作为探索肿瘤潜在生物学行为的一种研究方法,因其可无创、重复且能整体分析肿瘤内部异质性而越来越受重视,在泌尿系统疾病中的应用逐渐增多。影像组学中纹理分析等定量方法可以高通量提取更多病灶信息,从而达到对病变性质的精确预测,最终帮助临床作出较精确的诊断,辅助临床作出精准的治疗决策。本文就影像组学的研究方法、步骤及在泌尿系统肿瘤中研究进展方面进行综述。 With the increasing trend of incidence of urologic neoplasms these years,radiomics,as a research method to explore the potential biological behavior of tumors,has drawn more attention due to its non-invasive,repetitive and comprehensive analysis of tumor heterogeneity and has been applied to urologic neoplasms progressively.Utilizing the texture analysis and other quantitative methods in fadiomics can extract more lesion information with high throughput,and achieve accurate prediction of the nature of a lesion,ultimately,assisting in making more precise clinical diagnosis,more accurate treatment decisions.The research methods procedures of radiomics,and the progresses of radiomics research in urologic neoplasms have been reviewed in this article.
出处 《微创泌尿外科杂志》 2018年第5期351-360,共10页 Journal of Minimally Invasive Urology
基金 国家自然科学基金资助项目(81471641)
关键词 影像组学 泌尿系肿瘤 研究进展 radiomics urologic neoplasms research progress
  • 相关文献

参考文献2

二级参考文献49

  • 1Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5:4006.
  • 2Egelmeer AG,Velazquez ER,de Jong JM, et al. Development and validation of a nomogram for prediction of survival and local control in laryngeal carcinoma patients treated with radiotherapy alone: a cohort study based on 994 patients [J]. Radiother Oncol, 2011, 100 ( 1 ) :108-115.
  • 3Valentini V, Lambin P, Myerson RJ. Is it time for tailored treatment of rectal cancer? From prescribing by consensus to prescribing by numbers[ J]. Radiother Oncol, 2012, 102 ( 1 ) : 1- 3.
  • 4Jaffe CC. Measures of response: RECIST, WHO, and new alternatives [ J ]. J Clin Oncol, 2006, 24 (20) : 3245-3251.
  • 5Burton A. REGIST: right time to renovate? [ J]. Eur J Cancer, 2007, 43(11) :1642.
  • 6Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4) :441-446.
  • 7Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolution [ J ]. Nature, 2013, 501 (7467) :338-345.
  • 8Gatenby RA, Grove O, Gillies RJ. Quantitative imaging in cancer evolution and ecology [ J ]. Radiology,2013, 269 ( 1 ) : 8-15.
  • 9Tebbit CL, Zhai J, Untch BR, et al. Novel tumor sampling strategies to enable microarray gene expression signatures in breast cancer:a study to determine feasibility and reproducibility in the context of clinical care [ J ]. Breast Cancer Res Treat, 2009,118 (3) :635-643.
  • 10Yamamoto S, Korn RL, Oklu R, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization [Jl. Radiology, 2014, 272(2):568-576.

共引文献129

同被引文献52

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部